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Abstract

NOνA (NuMI Off-Axis νe Appearance) experiment is a long-baseline neutrino and

anti-neutrino oscillation experiment, designed to study the neutrino mass ordering

and to search for the effects of the CP violating phase angle δ. Extraction of the

νµ and νe oscillation parameters requires knowledge of the energy of the neutrino

interacting in the detector. The reactions of neutrinos with matter produce charged

and neutral particles in the detector. How well we are able to measure the energy

of the incoming neutrino is directly related to the final state particles, seen in the

detector. Inaccurate knowledge of neutrino-nucleon interaction obscures the energy

measurement of incoming neutrino. Models that predict these interactions must

be tuned to match the available cross section data. Further, most cross section

measurements often include one of these models in their determination of the detector

acceptance and efficiency for the specific process under consideration making the

cross section measurements model dependent. We present here a model independent

measurement of the cross section ratio, Rσ = σ(νµn→µ−p)
σ(νµn→2track) . Using data taken from the

NOνA near detector between August, 2014 and February, 2017, approximately 8800

νµn → µ−p interaction and approximately 12,000 νµn → 2track events are found.

We measure Rσ = 0.798± 0.024 (stat) ±0.009 (syst). We also measure the kinematic

dependence of the cross section ratio on Tµ and cos θµ. These results may be used to

compare various theoretical models for the above nuclear interactions and to improve

the neutrino energy measurements in neutrino oscillation analyses.
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Chapter 1

Neutrinos in the Standard Model

The standard model (SM) is the theory describing the elementary particles that

interact through the fundamental strong, weak, and electro-magnetic forces. The

basic particles and forces described by the standard model are summarized in Figure

1.1. Two kinds of particles exist in the standard model, fermions and bosons, shown

in Figure 1.1. The fermions exist in two basic types called quarks and leptons. Each

category contains 6 particles. The six leptons are arranged in three generations – the

“electron” and the “electron neutrino”, the “muon” and the “muon neutrino”, and

the “tau” and the “tau neutrino”. The neutrinos are electrically neutral and particles

of spin 1/2.

The existence of neutrinos was first postulated by Wolfgang Pauli as a “desperate

remedy” to the nuclear β decay [1, 2] puzzle in 1930. He suggested an additional

Figure 1.1 Standard Model.

1
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neutral and extremely light particle to resolve the β decay puzzle. In 1934 Fermi

proposed a formal a theory of β decay and renamed the particle suggested by Pauli

as “Neutrino”. The first direct evidence for the existence of neutrinos [3] was found in

the Cowan-Reines experiment in 1956. In their experiment, the source of neutrinos

was β decays produced by neutron decays in a nuclear reactor through the reaction

Equation 1.1. The neutrinos were detected via inverse β decay via Equation 1.2

through a characteristic signal of a pair of photons and a delayed photon from neutron

capture.

n→ p+ e− + ν̄ (1.1)

ν̄ + p→ n+ e+ (1.2)

The previously observed neutrinos turned out to be what we now call electron

neutrinos. At first it was the only type of neutrino believed to exist. Decades later

two more flavors of neutrino were discovered . In 1962 Leon Lederman, Melvin

Schwartz, and Jack Steinberger discovered the muon neutrino in an experiment at

Brookhaven [4] that awarded them a Nobel Prize in 1988. Finally, in 2000, the

DONUT collaboration at Fermilab reported an observation of four tau neutrinos [5].

This trio completes the set of the three standard model neutrinos.

In 1933, three years after Pauli postulated the existence of the neutrino, a particle

that he feared “can not be detected”, Enrico Fermi proposed a theory of beta decay

which involved the interaction of four fermions at a single point in space. One of these

was a massless neutrino. Fortunately, neutrinos only proved to be elusive, but not

undetectable. They were experimentally observed in inverse beta decay interactions,

in an experiment led by Cowan and Reines in 1956. Experimental work over the

next half century revealed that they are not massless either. In the following sections

we review how neutrinos fit into the current Standard Model of particle physics,

2
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Figure 1.2 Weak interaction three particle vertex.

focusing on the Electroweak sector, since leptons are altogether indifferent to the

Strong interaction.

1.1 The Weak Force

There are four fundamental forces at work in the SM: the strong force, the weak force,

the electromagnetic force. Neutrinos interact with matter only through the weak

force. The weak force is mediated by the W± and Z0 exchanges. Because neutrinos

only interact weakly, all neutrino interactions can be categorized into charged-current

(CC) interactions and neutral current (NC) interactions by the exchanges shown in

the Feynman diagrams in Figure 1.2.

As shown in Figure 1.2a, a neutrino interacts with matter exchanging the W±

boson and produce a charged lepton corresponding to the lepton flavour, “l”, of

the incoming neutrino. Such process involving a W boson are known as charged

current interactions. As shown in Figure 1.2b, a neutrino interacting with matter

through the Z boson will produce a neutrino with the same lepton flavour, “l”, as

the incoming neutrino. Interactions involving the Z boson are known as neutral

current interactions. In CC interactions, one would typically observe a charged lepton

created by the incoming neutrino and hadronic energy from the interacting nucleus.

3
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By determining the type of the charged lepton, one can measure the flavor of the

incoming neutrino. In NC interactions, outgoing neutrino would invisibly carry away

much of the energy of the initial neutrino and one would only expect to see the

hadronic energy resulting from the nuclear interaction.

1.2 Neutrino Oscillation

We have learned in the previous section there exist three flavors of neutrinos: elec-

tron neutrino (νe), muon neutrino (νµ) and tau neutrino (ντ ). The SM assumes the

neutrinos are massless. But if neutrinos do have mass, then a neutrino of given flavor

could convert to a neutrino of a different flavor, called neutrino oscillation. In 1957,

Bruno Pontecorvo first hypothesized the possibility that the neutrino oscillation could

occur between electron neutrinos and electron anti-neutrinos [6]. Note only one flavor

of neutrino, νe existed at that time. As knowledge of multiple flavors of neutrinos

developed, Ziro Maki, Masami Nakagawa, and Shoichi Sakata, in 1962, described the

oscillation between electron and muon flavors by extending Pontecorvo’s framework

for two neutrino state oscillation to three neutrinos [7].

1.2.1 Neutrino Eigenstates

Other than the three neutrino flavor states (mentioned earlier), a neutrino also has

three mass states, m1, m2 and m3. These flavor and mass states are called neutrino

eigen states. The flavor states and mass states are not equivalent, instead, they are

superposition of each other. This means when a neutrino is created from a weak

force interaction, it is created in a definite state of flavor. This definite flavor state,

say να, is a superposition of the mass states, νi and thus, can be written as a linear

combination of the mass states as follows,

|να〉 =
∑
k

U∗αk|νk〉, (1.3)

4
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where α = e, µ, τ and U∗αk is the 3 × 3 unitary matrix, since there are only

three types of neutrinos discovered so far. The unitary matrix is referred to as

“Pontecorvo–Maki–Nakagawa–Sakata” (PMNS) matrix [8]. This matrix describes

the coupling strength between the flavor state α the mass state i. The PMNS matrix

is represented as:

U∗αk =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e

−iδ

0 1 0

−s13e
−iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 (1.4)

U∗αk =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c12c23

 (1.5)

where sij = sin θij and cij = cos θij are the mixing angles and δ is the Dirac CP

phase. The unitary matrix is described in terms of three mixing angles, θ12, θ23, θ13

and a CP-violating phase , δ (Dirac phase). When a neutrino travels a long distance,

the superposition of mass states evolve with time (changing the relative probabilities

of being found in a certain flavor state), and then interact again through the weak

force, possibly yielding a different state of flavor.

1.2.2 Neutrino Oscillation Probability in Vacuum

The following derivation of the neutrino oscillation probability follows the quantum

formalism from [9], [10], [11] and [12]. A neutrino produced as a flavor eigenstate can

be written as να(t= 0) and can be expressed as follows:

|να(t = 0)〉 =
∑
k

Uαk|νk(0)〉. (1.6)

5
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When it travels a long distance, the superposition of mass states evolve with time.

At a later time t, we can write the time evolution of flavor states as

|να(t)〉 =
∑
k

U∗αke
−iHkt|νk(0)〉, (1.7)

where H is the Hamiltonian. From the equation above, we can see that at time t the

left side does not remain same as at time t = 0 and this leads to a different flavor of

eigenstate at time t. The flavor state α, when weakly interacts with another flavor

state β, we can write

〈νβ|να〉 =
∑
k

UβkU
∗
αke
−iHkt. (1.8)

The probability of observing the neutrino in flavour state β after traveling some

distance, say L and starting with an initial flavor state α, can be found by squaring

the transition amplitude 〈νβ|να(t)〉,

Pνα→νβ(t) = |〈νβ|να(t)〉|2 =
∑
j,k

U∗αkUβke
−i(Hk−Hj)tUαjU

∗
βj. (1.9)

Using standard quantum mechanics technique we can write

Hk(t) = Ekt− pk · x = (Ek − pk)L. (1.10)

Assuming neutrinos travel at the speed of light, we can approximate x=t=L (where

L is length of distance between source and detector) and E = |p|,

(
Ek − pk

)
L = E2

k − p2
k

Ek + pk
L = m2

k

Ek + pk
L ≈ m2

k

2EL. (1.11)

Therefore,

t(Hk −Hj) ≈
m2
k −m2

j

2E ≈
∆m2

kj

2E , (1.12)

where ∆m2
kj = m2

k −m2
j . Hence the oscillation probability in Eq.1.9 becomes

Pνα→νβ(t) =
∑
k,j

U∗αkUβkUαjU
∗
βjexp

(
− i

∆m2
kjL

2E

)
. (1.13)

6
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From here, we can go on to write the above expression in terms of the real and

imaginary parts, expanding the exponential into sine and cosine components. Using

trigonometry identities we obtain [13]:

Pνα→νβ(t) = δαβ − 4
∑
k>j

Re
[
U∗αkUβkUαjU

∗
βj

]
sin2

(∆m2
kjL

2E

)

+2
∑
k>j

Im
[
U∗αkUβkUαjU

∗
βj

]
sin2

(∆m2
kjL

2E

)
.

(1.14)

The equation shows that the neutrino oscillation probability depends on the param-

eters of the PMNS matrices, the values of the mass splitting terms ∆m2
21, ∆m2

31,

∆m2
32 and varies with the length of the baseline, L, and the energy of the neutrino

beam, E. The first term in the above expression is the Kronecker delta and is only

relevant if the neutrino stays in the same flavor state. For the third term, the only

complex phase in the PMNS matrix is eiδ. if δ = 0 (i.e. no CP violation), there is

no imaginary part leading the third term to drop out of the equation. In that case,

the second term dominates in describing oscillations between different flavors. The

argument of the sinusoidal term in Equation 1.14 can be written in S.I. units as -

∆m2
kjc

4L

4E}c . (1.15)

Expressing L in km and E in GeV and ∆m2
kj in eV 2, Eq.1.15 can be written as,

1.27∆m2
kjL

E
. (1.16)

Therefore, Eq.1.17 can be written as,

Pνα→νβ(t) = δαβ − 4
∑
k>j

Re
[
U∗αkUβkUαjU

∗
βj

]
sin2

(1.27∆m2
kjL

E

)

+2
∑
k>j

Im
[
U∗αkUβkUαjU

∗
βj

]
sin2

(1.27∆m2
kjL

E

)
.

(1.17)

7
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1.2.3 Two Flavor Neutrino Approximation

For most of the ongoing long baseline neutrino experiments, one need not consider the

full effect of three neutrino flavor mixing, but instead can consider the approximation

of two neutrino mixing. Ignoring the relatively smaller term in Equation 1.17 for

α = β, we can write

Pνµ→νµ(t) ≈ 1− 4
∑
k>j

|Uµk|2|Uµj|2 sin2
(1.27∆m2

kjL

E

)
. (1.18)

Equation 1.18 is the survival probability for a muon neutrino of energy E after trav-

eling a distance of L km.

If neutrinos had only two flavor states and two mass states, we could write two

flavor approximation by considering θ13 = 0. For the long baseline experiment of

ratio of order L/E ∼ 500, we can approximate sinusoidal term with ∆m2
21 ∼ 0 and

∆m2
31 ∼ ∆m2

32 = ∆m2
atm. Equation 1.18 now takes the form:

Pνµ→νµ ≈ 1− sin2 2θ23 sin2
(1.27∆m2

atmL

E

)
. (1.19)

The above equation is a two flavor neutrino oscillation probability. Long baseline

experiments like MINOS [14], T2K[15] and NOνA [16] are sensitive to the following

appearance and disappearance channels. The appearance probability for two flavor

approximation follows :

Pνµ→νe ≈ 1− 4|Uµ3|2|Uµ3|2 sin2
(1.27∆m2

32L

E

)
,

≈ sin2 2θ13 sin2 θ23 sin2
(1.27∆m2

32L

E

)
.

(1.20)

and the disappearance probability follows :

Pνµ→νµ ≈ 1− 4|1− Uµ3|2|Uµ3|2 sin2
(1.27∆m2

32L

E

)
,

≈ 1− cos2 2θ13 sin2 θ23 sin2
(1.27∆m2

32L

E

)
.

(1.21)

8
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The reactor based neutrino oscillation experiments like Daya Bay [17, 18], Double

Chooz [19] and RENO [20] are sensitive to following disappearance channel:

Pνe→νe ≈ 1− 4|Ue3|2|1− Ue3|2 sin2
(1.27∆m2

32L

E

)
,

≈ 1− sin2 θ13 sin2
(1.27∆m2

32L

E

)
.

(1.22)

1.2.4 Matter Effect

Neutrinos propagating through matter experience the weak force through coherent

and incoherent forward scattering. The amount of incoherent scattering is negligi-

ble due to very long mean free path of interaction in the Earth, so it can be safely

ignored. Ordinary matter is partially composed of electrons but not muons or taus.

So neutrinos (νe, νµ, ντ ) interact with matter via neutral currents and not through

charge current reaction. However, only νe can interact with medium via charged cur-

rent interactions. Figure 1.3 shows the Feynman diagrams for charged current (left)

and neutral current (right) scattering of neutrinos on electrons. Neutral current in-

teractions with matter are independent of any particular flavor of neutrino, so do not

affect neutrino oscillation probabilities. But the charged current interactions in the

ordinary matter is only caused by electron neutrinos. This additional scattering am-

plitude causes neutrino oscillations to have different probabilities relative to neutrino

oscillation in vacuum [21, 22].

In the case of two-neutrino mixing, the mixing angle in vacuum is replaced by

an effective angle in matter. The amount of change in the mixing angle depends

on matter density. For certain densities, even a small mixing angle in vacuum, the

effective mixing angle can become maximal in matter. This is called as MSW effect

after the authors of the theory Mikheev, Smirnov and Wolfenstein [23].

Due to NC and CC interactions, the vacuum Hamiltonian gets modified by the fol-

9
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(a) (b)

Figure 1.3 (a) Charged current scattering of νe on an electron. (b)
Neutral current scattering of any flavor of neutrino on an electron.

lowing terms [23],

VNC = −GFNn/
√

2

VCC = GFNe/
√

2,
(1.23)

where Nn and Ne represent the neutron and electron density respectively inside the

Earth.

In the case of two flavor mixing, the evolution equation for neutrino mass eigen-

state can we written as,

i
d

dt

ν1(t)

ν2(t)

 = H

ν1(t)

ν2(t)

 , (1.24)

where the Hamiltonian can be written as follows, since, E ≈ |p|+ m2

2|p| ,

H =

E1 0

0 E2

 ≈ |p|+

m2

1
2|p| 0

0 m2
2

2|p|

 . (1.25)

Converting it to the mass eigenbasis by using Hf = UHU † , where U is

U =

 cos θ sin θ

− sin θ cos θ

 (1.26)

10
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and

H = |p|+ m2
1 +m2

2
4p + ∆m2

21
4|p|

 cos 2θ sin 2θ

− sin 2θ cos 2θ

 . (1.27)

The diagonalizing angle is given by

tan 2θ = 2Hf12

Hf22 −Hf11
. (1.28)

With the effect of MSW, H in Equation 1.27 becomes,

H = |p|+ m2
1 +m2

2
4p − 1√

2
GFNn +

−
∆m2

21
4|p| cos 2θ +

√
2GFNe

∆m2
21

4|p| sin 2θ
∆m2

21
4|p| sin 2θ ∆m2

21
4|p| cos 2θ

 , (1.29)

where 1√
2GFNn and

√
2GFNe are from the NC and CC contributionsrespectively.

The NC term is written out of the matrix as it is common to all types of neutrinos.

However, due to absence of µ, τ in matter, CC term is written with M11 entry, as

only electron can have this interaction. The diagonalizing angle in this case is,

tan 2θM = ∆m2
21 sin 2θ

∆m2
21 cos 2θ − A, (1.30)

where A = 2
√

2GFNeE and E is the neutrino energy. From the above equation if,

A = ∆m2
21 cos 2θ

=⇒ 2
√

2GFNeE = ∆m2
21 cos 2θ

=⇒ Ne = ∆m2
21 cos 2θ

2
√

2GFE

(1.31)

From the equations above, we see that matter effects modify the terms sin(∆31) and

sin(∆21). For the normal ordering, matter effect enhances the appearance probability

νµ → νe but suppresses the ν̄µ → ν̄e. For the inverted ordering the result of the matter

effect is opposite. This opposite consequence of matter effect helps to disentangle the

CP violation.
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Figure 1.4 Neutrino flux from the Sun.

This figure was taken from [24].

1.3 Experimental Evidence for Neutrino Oscillations

1.3.1 Oscillation Parameters from Solar Neutrinos

The Sun is a great source of neutrinos. It produces a large number of electron

flavored neutrinos through the nuclear chain reactions that occur in the core of the

Sun. Figure 1.4 shows the flux of neutrinos produced inside the Sun through various

fusion reactions [24]. The energy spectrum of those neutrinos depends on the various

factors of the Sun and lies in the 0.1 - 10 MeV range [25]. These factors were studied

in detail by Bahcall and collaborators in the Standard Solar Model (SSM) [26]. The

model predicts a solar neutrino spectrum that can be observed on earth.

There were several experiments designed to detect solar neutrinos. The first ex-

periment was performed by Raymond Davis Jr. and collaborators in an experiment at
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the Homestake Mine in South Dakota to detect solar neutrinos [27]. The experiment

was based on the following reaction,

νe +37 Cl→37 Ar + e− (Eth = 0.814 MeV ). (1.32)

Due to the reaction threshold, the experiment was sensitive only to the neutrinos

produced in proton-proton interaction in the SSM,

8B →8 B∗ + e+ + νe(Eth =∼ 10 MeV ). (1.33)

A series of other experiments during 1990s, like SAGE [28] and GALLEX, GNO

[29] measured the rate of solar neutrinos produced in p-p reaction. In 1996, physi-

cists in Japan performed the Kamiokande [30] experiment using water Cherenkov

detectors. The experiment measured the elastic neutrino scattering on electrons.

νe + e− → νe + e−(Eth ∼ 5 MeV ). (1.34)

All of the neutrino experiments above have consistently measured a neutrino flux

significantly below the SSM prediction. The rate of solar neutrinos were found to be

within 1/3 of the expected rate as predicted by Solar Standard Model (SSM) [26].

This deficit in observed solar neutrinos was termed as Solar Neutrino Anomaly [31].

In 2001, the solar neutrino anomaly was resolved by the Sudbury Neutrino Ob-

servatory (SNO) experiment [32]. SNO measured the neutrino flux through different

channels, as shown below, with the sensitivity for all kind of neutrino fluxes.

νe + d→ p+ p+ e− (CC, Eth > 5 MeV ).

νx + d→ p+ n+ νx x = e, µ, τ (NC, Eth > 2.2 MeV ).
(1.35)

As discussed in section 1.2.4, CC reaction is only sensitive to the electron neutrinos

and NC is sensitive to all neutrino flavors. This sensitivity to νe charged current

13
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Figure 1.5 Flux of νµ,τ vs νe from SNO.

The dashed line shows the SSM prediction which is in complete
agreement with the neutrino flux (blue band) measured with the
NC [33].

interaction enabled SNO to measure the electron flavored neutrinos alone. The flavor

transition in the solar neutrinos is shown in Figure 1.5.

In 2002, the reactor neutrino experiment, KamLAND, measured the reactor neu-

trinos (ν̄e) coming from the nuclear reactor [34]. The neutrinos were detected via

inverse β decay:

ν̄e + p→ e+ + n ( Eth > 2.6 MeV ). (1.36)

The experiment measured the survival probability of ν̄e. Figure 1.6 shows the sur-

vival probability as a function of L/Eν̄ . The figure clearly shows that the neutrinos

oscillate. This experiment confirmed the solar neutrino oscillations measured by SNO.

The combined fit (Fig.1.7) of current data from the solar neutrino experiments

14
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Figure 1.6 Survival probability as a function of L/Eν̄ form the
KamLAND experiment.

The experimental data points are in good agreement with the
theoretical predictions based on neutrino oscillations [34].

result in the best fit oscillation parameters:

∆m2
21 = 7.54+0.26

−0.22 × 10−5eV 2, tan2 θ12 = 0.307+0.018
−0.016, m2 > m1.

These results mean that the mass eigenstate ν1 is about 2/3 of νe and ν2 is approxi-

mately 1/3 of νe.

1.3.2 Oscillation Parameters from Atmospheric Neutrinos

In atmosphere, neutrinos are produced in the collision of cosmic rays with nuclei

(air molecule) in the atmosphere. The collision produces secondary particles, mostly

pions [35]. Pion decays to a muon and a muon neutrino. The muon subsequently

decays to a positron, a muon anti-neutrino and an electron neutrino, shown in the

decay chain below. From this decay chain, it is clear that the ratio of νµ to νe is 2:1.
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Figure 1.7 Best fit results on ∆m2
21 and θ12 from the solar

neutrino experiments.

Results from KamLAND experiment are included [34] in the Fig-
ure.

π+ → µ+ + νµ , µ+ → e+ + νe + ν̄µ. (1.37)

Super Kamiokande (SK) experiment measured the neutrino flux coming from the

atmosphere. The collaboration measured the νµCC and νe CC interactions as a

function of the zenith angle. They observed that the rate of νµCC interactions due to

neutrinos coming from below (cosθ = −1) is signicantly lower than the rate of those

coming from above. The interpretation was understood as the disappearance of νµ as

the neutrinos pass through the matter coming from the other side of the earth. This
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Figure 1.8 NOνA joint fit analysis result.

The result is consistent with the measure-
ments other experiments. Taken from [36].

phenomenon is predominantly due to νµ → ντ transition.

Measurements of atmospheric muon neutrino disappearance are sensitive to |∆m2
32|

and sin2 2θ23. Figure 1.8 and Figure 1.9 show the latest results of |∆m2
32| and sin2 2θ23

from NOνA [36]. The upper octant is preferred at 0.2σ and the best fit values are

found as shown below in Equation 1.38.

|∆m2
32| = 2.444+0.079

−0.077 × 10−3eV 2

sin2 θ23 = 0.558+0.041
−0.033, Upper octant

sin2 θ23 = 0.475+0.036
−0.044, Lower octant

(1.38)

1.4 Unknown Parameters in Neutrino Oscillations

1.4.1 Mass Hierarchy

So far scillation experiments have not been able to resolve the sign of the mass square

differences, ∆m2
32 and ∆m2

31. As a result, the mass hierarchy of the neutrino mass
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Figure 1.9 NOνA joint fit analysis result.

The IH at δCP = π/2 is disfavored at greater than
3σ. Taken from [36].

eigenstates is yet unknown. To determine whether it is normal hierarchy or inverted

(shown in Figure 1.10), future experiments have to be sensitive to the matter effect.

Future experiments like DUNE, INO and HyperK are being designed with the goal

to resolve the mass hierarchy.

1.4.2 CP Violation

The CP symmetry arises from the complex phase, δ, in thePMNS matrix. If CP is

violated, we will have P (να → νβ) 6= P (ν̄α → ν̄β) for α 6= β. Thus CP violation can

be measured in terms of asymmetry A.

A
(α,β)
CP = P (να → νβ)− P (ν̄α → ν̄β). (1.39)

Writing the probabilities in Equation 1.39, we get

P (να → νβ)− P (ν̄α − ν̄β) = 4∑j>k Im(U∗βjUβkUαjU∗βk) sin
(

∆m2
jkL

2E

)
;

∝ sin δ, (1.40)
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Figure 1.10 Possible mass hierarchy scenario among 3 neutrino
mass eigenstates.

where δ is the Dirac phase in the PMNS matrix. The size of the difference between the

neutrino and anti-neutrino oscillation probabilities can be obtained from the Equation

above. The T2K experiment has given a hint of CP violation, shown in Figure 1.11,

in the neutrino sector. Future experiments, such as DUNE and HyperK, are designed

to potentially observe the CP violation.

1.4.3 θ23 Octant

Whether θ23 is < π/4 or > π/4 is yet unknown though the current measurements of

θ23 are consistent with 45◦. The precise value of θ23 is very important in knowing the

admixture of ν3 mass eigenstate. If θ23 = 45◦, all mass states will contain contains

equal mixture of νµ and ντ flavor eigenstates. This might indicate a new symmetry

[37] in the neutrino sector that has not yet been considered. This scenario is known

as maximal mixing.
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Figure 1.11 χ2 vs CP violation phase as measured at
T2K.

1.5 Importance of Cross-section

To probe the important questions of neutrino physics (described in section 1.4), yet

unknown, the neutrino experiments have entered into the precision era. Neutrino

oscillation experiments determine the oscillation probability by measuring the neu-

trino event rate. So we need to measure the number of neutrinos as a function of

neutrino energy in the near and far detector. The number of neutrino events (N) at

any detector, in general, can be written as,

Ndetector
να (Eν) ∝ Φ(Eν)× σ(Eν)× εdetector(Eν), (1.41)

where Φ(Eν) is the number of neutrinos produced by the accelerator per energy

per cm2 for a given number of protons on target, σ(Eν) is the cross-section of an

interaction under consideration and Φ(Eν) is the detector efficiency. To determine

the number of neutrinos interacting in a detector, one must understand the σ(Eν) i.e.

what happens when a neutrino interacts inside of a nucleus. This requires us to have

an accurate knowledge of neutrino-nucleus interaction. Different neutrino-nucleus
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interaction model predicts different particle multiplicity in the final state giving rise

to uncertainty in the measurement. This uncertainty, in turn, may introduce error

in calculating the total number of neutrino events in a detector. This boils down

to a point of better understanding the cross section. Thus measuring neutrino cross

sections precisely are an essential ingredient in all neutrino experiments. Also the

εdetector(Eν) in Equation 1.41 depends on the kinematics of the final state observables

in the detector, which is driven by cross-section.

1.6 Relevance of the Thesis Work

Extraction of the νµ and νe oscillation parameters in my experiment, NOνA (NuMI

Off-Axis νe Appearance), requires knowledge of the energy of the neutrino interacting

in the detector. The reactions of neutrinos with matter produce charged and neutral

particles in the detector. How well we are able to measure the energy of the incoming

neutrino, is directly related to the the final state particles seen in the detector. Inac-

curate knowledge of neutrino-nucleon interaction obscures this energy measurement

of incoming neutrino. Models that predict these interactions must be tuned to match

the available cross section data. Further, most cross section measurements often in-

clude only one of these models in their determination of the detector acceptance and

efficiency for the specific process under consideration making the cross section mea-

surements model dependent. The thesis performs a model independent measurement

of the cross section ratio, Rσ = σ(νµn→µ−p)
σ(νµn→2track) . Furthermore, the thesis also determines

the kinematic dependence of the cross section ratio on Tµ and cos θµ. These results

may be used to compare various theoretical models for the above nuclear interactions

and to improve the neutrino energy measurements in neutrino oscillation analyses.
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1.7 Chapter Summary

Several important questions of neutrino physics that still need to be answered by

current and ongoing neutrino experiments are :

• What is the absolute mass scale of neutrino?

• What is the mass hierarchy?

• What is the δ-CP phase ?

• What is the octant of θ23?

• What is the type of neutrinos, Dirac or Majorana?

• Are there any sterile neutrinos?

This chapter introduces the theory of neutrino oscillation followed by an overview

of the recent measurement of the neutrino oscillation parameters. The chapter also

includes a short discussion on the importance of cross-section measurement and how

the measurement is incorporated in the current picture of neutrino oscillations.
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Chapter 2

NOνA Experiment

The NuMI Off-axis νe Appearance (NOνA) experiment is designed to make precise

measurements of muon neutrino (anti-neutrino) disappearance and electron neutrino

(anti-neutrino) appearance using the Neutrinos at the Main Injector (NuMI) beam at

Fermilab. The NOvA experiment consists of two detectors, near (ND) and far (FD).

The experiment uses FD to measure an oscillated spectrum when ND data is used to

constrain systematic uncertainties in the predicted FD spectrum. The experiment is

made up of two main components, a beam of neutrinos described in section 2.1 and

the detectors used to measure neutrino interactions described in section 2.2. Finally

section 2.3 and 2.4 describe the readout electronics and timing system in the context

of the NOvA experiment.

2.1 NuMI Beam

NOνA is an accelerator-based oscillation experiment, so a high intensity neutrino

beam is essential to run the experiment. There are three principal beams produced

at the Fermilab accelerator campus for several medium-energy and high-intensity

experiments. NOνA makes use of Neutrinos at the Main Injector (NuMI) beamline

as its neutrino source. We will briefly describe here the process by which the NuMI

beam is created. Further details are in [38].
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Figure 2.1 A schematic diagram of the current Fermilab accelerator
complex.

Graphic is courtesy of Fermilab, http://www.fnal.gov/pub/science.

2.1.1 The Main Injector

A schematic of Fermilab accelerator complex and the NuMI beam facility is presented

in Figure 2.1. The figure portrays different components of the facility that will be

mentioned in this section. The origin of the beam is H− ions that get accelerated

to 400 MeV in the linac. The electrons are stripped off the ion and the protons are

fed to the booster ring, which accelerates the proton beam to 8 GeV. The beam in

the booster is bunched and segmented to produce batches of ∼ 4 x 1012 protons. Six

batches, with 4 x 1012 protons each, are injected one after another from the Booster

to the Recycler ring. These proton batches are fed into recycler using a slip-stacking

method where six successive booster batches are injected in a train followed by six
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more in a different orbit [39]. The slip-stacking process doubles the number of protons

in all six batches. The intensity of six batches now achieve approximately 4.8 x 1013

protons. Next the batches are delivered to the Main Injector (MI) ring where the

protons get accelerated to 120 GeV. The NuMI beam-line extracts six batches of

approximately 4.8 x 1013 120 GeV protons from the Main injector. We refer each

extraction of protons a neutrino spill. The MI injection and acceleration cycle takes

1.33 seconds, that typically makes an interval of 1.33 s and each neutrino spill has a

time span of 10 µs with a structure of six batches inside.

2.1.2 Focusing Horns and The NuMI Beamline

Upon exiting the main injector, the beam spill is directed to the NuMI target hall.

The target consists of a series of 48 graphite fins, each 24 mm long, with a small

gap between consecutive fins. The total target length is 1.2 m [40], 2 pion interac-

tion lengths. The collisions between the accelerated protons and the target produce

a secondary meson beam. The meson beam is primarily composed of π± with a

contamination of K± and KL.

Figure 2.2 Diagram showing NuMI beam components.

The cartoon of the beam components is taken from [41].

The charged mesons produced are then focused towards the decay pipe using two

magnetic horns placed downstream of the end of the target. The inner conductors
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of horns are parabolic in shape. The horns act as a lens with the focal length pro-

portional to the momentum of the pion. The current through the horns is 200 kA.

Changing the current direction within the focusing horns changes the direction of

the magnetic field and therefore the sign of the mesons that are focused. Operating

the horns with forward or reverse horn current focus positively or negatively charged

mesons respectively. Downstream of the horns is a 675 m decay pipe. The resulting

beam of charged mesons then enters the decay pipe filled with 0.9 atm helium. In

the decay pipe, the positively and negatively charged mesons decay predominantly to

neutrinos (νµ) or anti neutrinos (ν̄µ) respectively through the following decay modes:

π+ → µ+ + νµ; π− → µ− + ν̄µ (BR. 99.98%),

K+ → µ+ + νµ; K− → µ− + ν̄µ (BR. 63.55%).
(2.1)

The beam then passes through the hadron monitor, the beam absorber, muon mon-

itors and about 240 meters of rock. This is to to absorb any remaining muons,

hadrons, and charged particles to leave a pure neutrino/anti neutrino beam. After

the rock, the beam arrives at the NOνA near detector before it continues traveling

through the Earth’s crust for 810 km to reach the NOνA far detector. A cartoon

illustrating all the previous stages of the NuMI beamline is shown in Figure 2.2.

2.1.3 Off-axis Experiment Design

Figure 2.3 Off-axis neutrino beam schematics.
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The detectors for the current generation of long baseline accelerator based neutrino

oscillation experiments are located slightly off the center of the neutrino beam axis,

shown in Figure 2.3. For NOvA, both the detectors are at 14 mrads off-axis of the

NuMI beam as displayed in Figure 2.3. This choice comes from the analysis of Lorentz

boosted decay kinematics of the π±/K± that produces neutrino beam. We will take

a short overview of the decay kinematics of the dominant mode π± → µ+ + νµ and

how the decay shapes the choice of off axis.

This two-body decay process occurs isotropically producing mono-energetic neu-

trinos in the rest frame of pion. The neutrino energy in the COM frame can be

calculated by the four momentum of the involved particles. When boosted into the

lab frame the parent particle π± is not at rest and muons and neutrinos travel in the

direction of the parent particle. In the lab frame the energy of the neutrino produced

by pion decay (Eν) is given by

Eν = (0.43)Eπ
1 + γ2θ2 , (2.2)

where Eπ and mπ are the energy and the mass of the parent pion, γ = Eπ/mπ and

θ denotes the angle between the pion and outgoing neutrino direction. For θ = 0,

i.e. on-axis neutrinos, Eν ∝ Eπ, causing the Eν distribution to be as broad as Eπ

distribution that comes out of magnetic horns. For non zero values of θ, Eν falls off

for very large values of Eπ. Figure 2.4 shows the Eπ spectrum for four off-axis angles

(θ = 0 mrads, θ = 7 mrads, θ = 14.6 mrads and θ = 21 mrads). The plot also shows

with the increase of off-axis angle the Eν spectrum is almost horizontal with respect to

pion energy causing the neutrino energy not to have strong dependence on the parent

pion energy. In addition Figure 2.5 shows that at 14 mrad, the beam configuration

produces a narrow energy neutrino beam peaked at 2 GeV with approximately 4

times more neutrinos than on-axis scenario. The combination of neutrino energy and

baseline length for the FD means that the νµ is at oscillation minimum.
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Figure 2.4 Neutrino energy distribution as a function
of parent pion energy at different off-axis angle.

The figure is taken from [42].

Figure 2.5 The off-axis beam at θ =
14.6 mrad results in relatively narrower
energy distribution of neutrinos.

The figure is taken from [42].
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2.2 NOνA Detectors

2.2.1 Detector Design

The Near Detector (ND) is located 1 km from the NuMI beam at Fermilab and the

Far Detector (FD) is at a distance of 810 km downstream of NuMI in Ash River,

MN, as shown in Figure 2.6. The distance is set for the νµ first oscillation mini-

mum. The ND sits approximately 105 m underground in a cavern with negligible

cosmic exposure during beam spills. The roof of the far detector hall is covered

with concrete and barite, which is effectively equivalent to having 3 m of rock above

it. The NOvA detectors are functionally identical in order to minimize systematic

uncertainties in the near to far extrapolation. Both the detectors are 65% active

tracking calorimeters. The detectors are designed to measure neutrino interactions in

the few GeV energy regime and to identify individual particles produced in neutrino

interactions. The NOvA detectors are constructed from low Z materials (primarily

carbon). They have a radiation length of approximately 40 cm which is equivalent

to the length of 7 NOνA cells (characteristic scale in the longitudinal dimension of

fully contained electromagnetic showers) and the Moliere radius (characteristic scale

in the transverse dimension of fully contained electromagnetic showers) is equivalent

to the width of approximately 2 NOvA cells. This allows an electromagnetic shower

to develop over sufficient planes and cells to be distinguished from muons, charged pi-

ons, and protons, which appear in the detector as non-showering particle tracks. This

particular feature of the detector also aids to the distinction between electromagnetic

showers from two photons that originate from π0 decays from those that originate

from electrons. Separating νeCC events that leave an electron induced shower is of

particular importance since NOνA sees significant number of photon induced showers

from π0 which are a major background of νe appearance. The construction common

among both detectors and the details specific to the far and near detectors will be
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discussed in the following sub-sections. For more details, please see the Technical

Design Reports of NOνA [42].

Figure 2.6 The diagram shows the
geographical location of two NOνA detectors.

2.2.2 The Basic NOvA Detector Elements

The NOνA Cells and PVC Extrusions

Both detectors are based on a cellular structure. Cells are produced by extruding

polyvinyl chloride (PVC) to form a rectangular rigid structure of interior cross section

of 3.9 cm × 6.0 cm with 2 to 4.5 mm of thick walls outside. Each cell is filled with

liquid scintillator and within the cell is a polystyrene looped wavelength shifting

(WLS) fiber. Cells are made of PVC to provide the detector structural support while

maintaining the low-Z design goal. The PVC is mixed with titanium dioxide, TiO2

to attain 90% reflectivity for 430 nanometer wavelength light. The higher reflectivity
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allows more photons to reflect within a cell several times and increases the probability

of absorption of light in the WLS fiber.

Sixteen cells are put together side by side to form An extrusion is comprised of

sixteen cells side by side, shown in Figure 2.7, with each cell separated from the next

by 3.3 mm of PVC. Two extrusions are glued together side by side to form a planar

unit of 32 cells called a module as shown in Figure 2.8. One end of the module is

capped by the end plate to contain the liquid scintillator inside and the other end

is connected to a Hamamatsu avalanche photodiode (APD). PVC is approximately

30% of the total NOνA detector mass.

Figure 2.7 Cross section view of an extrusion (16 cells) in NOνA with a width
of 63.5 cm and depth of 6.6 cm.

The picture is taken from [42].

Liquid scintillator

The detector is filled with liquid scintillator held within the cells. This liquid scintilla-

tor accounts for approximately 65% of the detector mass. The unit cell is filled with

scintillator whose chemical composition is 5.23% pseudocumene (1,2,4- Trimethyl-

benzene) + 94.63% mineral oil +∼ 1% wavelength shifting (WLS) agents. The WLS

agents used are - (PPO(2,5-Diphenyloxazole)+ bis-MSB (1,4-bis-(o-methyl-styryl-)-

benzene)). The scintillator emits light with a spectrum peaked between 360 - 390 nm

when charged particles pass through. WLS agents absorb the light emitted by the
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Figure 2.8 A side on view of an extrusion module constructed
from two extrusions of a total of 32 cells, an end plate, a side
seal, a manifold cover, a snout and an electronics box.

The picture is taken from [42].
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scintillator and shift the initial wavelength of photons to 400 - 450 nm to be picked

up by the optical fiber.

WLS fiber

Within the cell there is 0.7 mm WLS fiber looped at non-instrumented end of the cell

as shown in Figure 2.9. Both ends of the WLS fiber are connected to one pixel of a 32

pixel APD at the instrumented side of the cell. The fiber core is made of polystyrene

with refractive index 1.59 mixed with R27 dye (as the wavelength shifter). Charged

particles passing through a cell produce scintillation light that reflects off the edges

of the cell several times. A fraction of the scintillation light (photons) impinges on

the WLS fiber. The fiber absorbs light primarily in the blue and UV spectrum (400

– 450 nm light). The absorbed wavelength of the light gets shifted to green spectrum

(490 – 550 nm light). The fiber then re-emits photons in the green spectrum, shown

in Figure 2.10. Some of these green photons are trapped inside the fiber by internal

reflection and get transported to the fiber ends where they are measured by the APD.

As light travels down the fibre it is attenuated with light in the range 520 – 550 nm

preferentially surviving.

Avalanche Photo Diode (APD)

The light that exits the WLS fibre ends is detected by an APD. An APD converts a

light signal into an electronic signal pulse. Fig.2.11 shows a photograph of an APD

containing an array of 32 pixels. Each APD pixel is interfaced with both ends of a

looped WLS fibre from a single cell. Thus each pixel reads out a single cell. The

NOvA APD has an 85% quantum efficiency. The high quantum efficiency is necessary

because it allows the observation of faint light signal from the other end of 15 m long

FD cells in NOνA. Each APD is connected to a front end board that prepares the

signals from the APD for the data acquisition system. The ND cells are 4.2 m long
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Figure 2.9 A schematic view
of a NOνA cell, filled with
liquid scintillator and a
flourescent green
wavelength-shifting fiber.

Taken from NOνA internal
repository.

in the near detector and 15.2 m long in the FD. Fiber ends from a single cell are

connected to one pixel of the APD, pictured in Figure 2.11.

2.2.3 Detector Assembly

The NOvA detectors are constructed from collection of cells described in section 2.2.2.

A module is made of 32 cells i.e. two extrusions glued together (also discussed in

section 2.2.2). Several modules are glued together to make a plane. In each plane the

modules are either vertically or horizontally aligned. The cells in the adjacent planes

are orthogonally rotated with respect to the previous plane as shown in Figure 2.12.

This alternating orientation of the detector planes gives two independent detector

views. With cells aligned horizontally, the detector measures the vertical view and

34



www.manaraa.com

Figure 2.10 Fiber absorption and
emission shape is shown as a function of
wavelength.

Taken from NOνA internal repository.

Figure 2.11 An APD
containing an array of 32
pixels.

The figure is taken from
[43] .
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with cells aligned vertically, it measures the horizontal view. These different 2D views

allow for 3D reconstruction of a particle position inside the detector. Fig.2.13 shows

the 3-D as well as 2-D views of a neutrino event in the NOνA detector, made of

alternate planes. Though all the fibers from each cell in the module are separated

from each other, they are connected to a single optical connector at the fiber ends.

This optical connector attaches the module to an avalanche photo diode (APD),

shown in Fig.2.11.

Figure 2.12 The alternating orientation of
the cells within the stacked planes of NOνA
detector.

The figure is taken from [42].

2.2.4 NOνA Far Detector and Near Detector

The 14 kton FD is built on the surface above sea level. Each plane in the FD consists

of 12 modules and a block contains 32 planes. There are a total of 28 blocks and 896

planes and 344,064 cells in the FD. Approximately 65% of the detector mass comes

from liquid scintillator and 35% comes from PVC. The FD, due to its location, sees

a significant number of cosmic rays. The background due to cosmic rays is mitigated

36



www.manaraa.com

Figure 2.13 NOνA detectors are made up of planes, made of cells, put in
alternate fashion. Two 2-D views of an event can be reconstructed from alternate
planes as shown on the right hand side of the diagram.

Taken from NOνA internal repository.

by a shielding overburden of barite above the detector.

The ND weighs 330 tons. In the ND, a plane is made up of 3 modules. Thirty

two planes constitute a block. Near detector is made up of total 8 blocks, 214 planes

and 20,192 cells. The near detector has a slightly more complicated structure. We

divide the entire ND into 2 region, fully active region and a muon catcher. There are

6 blocks of 32 planes in the fully-active region. The muon catcher is 3 modules wide

and 2 modules tall and shorter than the fully-active region of the ND. It consists

of 10 4-inch steel planes interleaved with 22 active planes. More details about the

muon catcher can be found in the technical drawings [44]. The near detector is 105 m

underground and 1.015 km from the NuMI target. ND therefore sees a higher flux of

37



www.manaraa.com

Table 2.1 Hardware specifics about NOνA detectors.

Far Detector Near Detector
Cells per Module 32 32
Modules per plane 12 3(3,2)
Cells per Plane 384 96(96,64)
Planes per Block 32 32(n/a)
Number of blocks 28 6(2)
Number of Cells 3,44,064 18,432 (1,760)
Number of Planes 896 192 (22 + 10 steel)
Cell Depth [cm] 5.64 5.64
Cell Width [cm] 3.6 3.6
Cell Length [cm] 1550 399 (399, 274)

Detector X Dimension Extents [cm] -780 to 780 -200 to 200
Detector Y Dimension Extents [cm] -780 to 780 -200 to 200 (-200 to 70)
Detector Z Dimension Extents [cm] 0 to 5,962 0 to 1,280 (1,280 to 1,560)

Detector Mass [ton] 14,363 293
Liquid Scintillator [gal] 2,674,000 41,140

Detector parameters are obtained from [45], [46].

NuMI neutrino events and a lower flux of cosmic rays compared to the FD. Table 2.1

summarizes the parameter values for the near and far detectors. Figure 2.14 shows

the structure of the detectors.

2.3 Overview of Data Acquisition (DAQ) System

The main task of NOνA DAQ system [47] is to accumulate data collected from the

detector and store the relevant data into hard disks permanently for offline analysis.

There are charged and neutral, both particles produced when a neutrino interacts

inside the detector. These particles travel through the detector and have further

interactions. These interactions often create photons. How these photons reach

APDs, the primary light measuring electronics, is already described in Sec.2.2.2. An

APD continuously reads photon signals from 32 individual cells in the detector by

looking at changes in voltages. The APDs are kept at a voltage of ∼ 425 V and
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Figure 2.14 NOνA detectors - Far detector and near detector.

Picture taken from [42].

run at a gain of 100. To suppress the noise mostly due to the generation of thermal

electron-hole pair, the APDs are kept at very low temperature. This is achieved by

mounting a device called thermoelectric cooler (TEC) to the APD. A thermocouple

measures the APD temperature and a feedback loop maintains the APD at −15◦ C to

get a stable gain. Each NOνA APD is connected to a Front End Board (FEB). FEB

houses avalanche photo diode (APD), application-specific integrated circuit (ASIC),

analog to digital converter (ADC) and field programmable gate array (FPGA). The

signal from the APD is sent to the ASIC where it is shaped and amplified by a factor

of one hundred. ASIC shapes the APD output so that a physics hit can be read out

on a timescale comparable to the clock tick. The ASIC output is then propagated
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Figure 2.15 A schematic of the NOνA front end electronics.

An APD, furthest left, is the basic detection element. The APD drives an
ASIC which shapes signal photon pulses into a waveform that can be read
on time-scales similar to the clock tick. The shaped pulse then travels
through an ADC which digitizes the signal. That then passes through
an FPGA, which compares the ADC to a threshold, deciding whether to
pass the signal along to the DAQ. There is also a thermo-electric cooler
which interacts with the APD, keeping it at a constant temperature for
a stable gain.

to an analog-to-digital converter (ADC) to digitize the signal. The digitized signal is

passed to field programmable gate array (FPGA). A threshold is applied in FPGA.

Hits that pass threshold are time stamped for each hit in the channel. A diagram of

the FEB is shown in Figure 2.15.

The FEB transmits the digitized signals to a Data Concentrator Module (DCM).

Each DCM receives inputs from 64 FEBs. There are 168 DCMs in the FD and 14

in the ND. Each DCM collects all the information from the connected FEBs during

a 50µs time window called microslice [48]. A DCM accumulates 100 microslices,

amount to 5 ms of data, called a millislice. The millislices from each DCM are sent to

a computer in a buffer farm. After these data are transferred to the buffer farm the

microslices from all the DCMs are sorted and combined by time into 500 µs events.

These events are stored on the buffer farm for 30 minutes. The data is hold in the

buffer so that it can be searched for various trigger conditions. Events that pass
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Figure 2.16 A cartoon of DAQ data flow.

different trigger conditions are copied from the buffer node to a permanent storage

disk. Figure 2.16 gives an overview of how a signal received by an APD reach data

disk through different components of DAQ.

2.4 Near Detector Timing Peak

The ND is 100 m underground, so the cosmic interaction rate in the ND is negligible.

But the ND sees a high rate of neutrinos, for example, 3-4 neutrino interactions per

NuMI spill. Therefore, the activity registered in the detector is mostly due to the

interaction of neutrinos. We learned from the previous sections that the NuMI trigger

window is 500 µs and the neutrino interactions occur within the 10 µs of NuMI spill

covering almost the center of the trigger window. The timing of the NuMI beam in

the ND can be observed after collecting a few spills of NuMI data. The beam spill

in the 500 µs trigger window is found to span 218− 228 µs (Figure 2.17), consistent

with the expectation. Because of the large statistics of NuMI interactions in the ND,

we are also able to observe 6 batches of proton (Figure 2.17) in NuMI spills.
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Figure 2.17 Near Detector timing peak, the left plot is over the full 500µs beam
window and the right one is zoomed to show the NuMI beam structure.

2.5 Chapter Summary

This chapter presents an overview of the NOνA beam line and the detectors. The

chapter also includes a summary of the NOνA DAQ system that is responsible for

various monitoring tools to ensure good quality of data for physics analysis. More on

DAQ data format can be found in [48]. NOνA experiment is long baseline neutrino

oscillations experiments. It has been designed and optimized to detect νe-CC interac-

tions. The cells size and low z material gives NOνA a capability to differentiate π0 and

electron initiated showers and thereby a good selection efficiency over backgrounds.

Use of near detector helps in canceling most of the systematic uncertainties.
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Chapter 3

Reconstruction

The reconstruction of 2 track candidate events starts with a collection of above thresh-

old APD signals collected by DAQ. Processed and calibrated signals produce a set of

hits in the detector, termed CellHits. To extract useful physics information from the

hits, we need to associate hits with particle trajectories and then identify the particle.

These cellhits contain spatial, time, charge information about the hits. Because of

the NOνA cell structure, a cellhit can only read 2-D information about the particle

trajectory. The plane number gives the z coordinate of a cellhit and also provides

us with either x coordinate or y coordinate depending on if the cell is vertical or

horizontal. Thus a cellhit defines only 2-D view of a particle trajectory. To learn the

exact location we need to build 3-D view of the particle trajectory inside the detector

i.e. the x-z view of a cell must be correlated with the corresponding y-z cell view.

The task of the reconstruction is to associate hits with the same physics interaction

it came from and organize them into track or cluster objects. The kinematics infor-

mation attached to those objects helps us identify various particles like µ, π+, π− etc.

that in turn lead to identify various interactions such as νeCC, νµCC.

Reconstructing a physics event in data is a multi-step process. Each step has

an associated module, a C++ class which performs a specific task on the input file.

Every module [details are in later sections] is run in sequence. The required modules

to perform the analysis presented in this thesis are

1. DAQ2RawDigit (data only) - converts raw data to a convenient format for

further processing.
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2. CalHit - writes hit information in a form more convenient for analysis.

3. Slicer4D - groups hits in time and space.

4. CosmicTrack - takes slice hits and makes tracks for cosmic-ray interactions.

5. KalmanTrack and KalmanTrackMerge - takes slice hits and makes tracks for ν

interactions.

Each of these modules is explained in the following sections.

3.1 DAQ2RawDigit

This module is run over data that directly comes from the NOνA detectors. The

initial information that comes out of the detector is saved in a format that is con-

venient and compact for the data acquisition system (DAQ). DAQ2RawDigit is run

over an input .raw file that comes out of DAQ and convert it to a .root format for

efficient reconstruction and to make the initial data compatible to the rest of the data

analysis software. The output file primarily contains a collection of hits, called raw

digits, for each interaction. At this stage raw digits are hits with their location in

electronic coordinates. Those raw digits include information about the hit, position,

pulse height and time.

3.2 CalHit

The module takes in raw digits straight from the output of DAQ2RawDigit module

and creates cell hits. CalHit associates each hit with a detector cell and a detector

plane. If a hit comes from channels deemed bad by the BadChannel service, software

that monitors detector performance, CalHit will remove the hit. Too many or too

few determine if a channel is considered good or bad for a period of detector running.

CalHit uses attenuation and absolute calibration information to convert pulse height
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measurements to the energy deposited in the cell i.e. GeV, as described in Chapter

4. CalHit also determines the precise time of the hit in nanoseconds.

3.3 Slicer4D

In the NOνA detector, data are recorded in trigger windows of length 500 µs. The

collection of hits that occurs within the specified time interval is called an event.

An event may contain multiple physics interactions. The neutrino beam spill is for

only 10 µs and is roughly at the center of the data readout window (500 µs). There

are approximately 3-4 neutrino interactions that ND sees from each beam spill and

interactions are often confined to specific regions of the ND. Thus, the challenge is

to separate each neutrino interaction that occurs within each beam spill in ND from

each other. In the FD, neutrino interactions are rare but a readout window typically

sees 50 – 70 cosmic rays. The reconstruction tool used to cluster contiguous hits in

time and space from the collections of hits is Slicer4D. The produced cluster of hits

are called slices. Slicing in NOνA is based on the DBSCAN (Density-Based Spatial

Clustering of Application with Noise) algorithm [49], which groups together hits with

high density that are potentially related to each other. The algorithm applies a

scoring system to cluster hits based on the distance in time and space from other hits

in the trigger window. Any hit that does not get clustered is defined as a noise hit.

Finally, if the Slicer works perfectly, each slice would correspond to one physics

interaction (mostly neutrino interaction in ND and cosmic ray in FD) and would

remove hits originating from electronic noise and from other interactions. For more

information, see the technical note [50]. These slices are then, fed to different re-

construction chain to reconstruct event candidates. Figures in 3.1 show examples of

slicing in the near and far detector. Note that the dots in the same color indicate

hits clustered in the same slice by slicer and different colors represent different slices

occurred at different time in 500 µs readout window.
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(a)

(b)

Figure 3.1 The event display of ND and FD after slicing.

(a) The display is zoomed in on the 10 µs time window for a near
detector spill to display neutrino activity. Slices are indicated by
hits with the same color from the same slice.
(b) Far detector 500 µs time window shows cosmic rays. The dots
in the same color indicate hits that have been clustered together in
the same slice by slicer.
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3.4 Tracking

A track is defined as a mostly contiguous string of cell hits that would result from the

energy deposited by a single, non-showering particle. Tracks are reconstructed from

individual slices. The goal of the tracking is to take the detector hits that belong to

the same slice and reconstruct the trajectory of individual particles in the detector.

This is useful in identifying particles that deposit energy with a track like signature,

such as muons, pions. There are two kinds of tracking algorithms used, described in

following two subsections:

3.4.1 Cosmic Tracking

The tracking is performed on slices (as described in the previous section). As the

name suggests, cosmic track algorithm is optimized for finding high energy vertical

tracks fitted from the hits produced by cosmic particles (mostly muons) coming from

atmosphere in the detector. The algorithm makes use of a basic straight line-type

fitter by fitting a line along the trajectories in either view (X-Z or Y-Z) of the detector.

The fitter minimizes the distance between the hits and the fit line and removes hits

that are greater than some distance from the line about 10 cm (∼ 2 cells). By

removing those hits, most of the noise hits are removed. Figure 3.2 shows a cartoon

of such tracking approach. The tracks formed are 2-D tracks and are found in each

view of the detector. The two tracks found in both the views are combined to form

3-D tracks. More details on cosmic tracker can be found in [51].

3.4.2 KalmanTrack and KalmanTrackMerge

The trajectories of charged particles within a neutrino interaction are reconstructed

using a technique based on the Kalman filter algorithm [52, 53]. The Kalman tracking

algorithm produces reconstructed tracks called Kalman tracks. KalmanTrack is a

module that takes in clusters of hits from Slicer and groups the cell hits corresponding
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Figure 3.2 A diagram of Cosmic tracking
approach.

The colored circles represent cosmic hits. The
solid black line is the straight line-type fitter
that optimizes the distance between a given
hit and the fit line. The red hit is rejected for
being far from the fitter.

to a single view (either vertical or horizontal). Within each view seeds are created

with a pair of hits that are less than 3 planes apart. These seeds form a test track.

To predict the next adjacent hit the test track is then propagated to the next plane

using the current value of the track position and slope. Any hits found in the next

plane consistent with being on the test track or close to the predicted location are

added to the track. After a hit is added to the track the slope and intercept of the

track get updated with the new measurement. The process continues to the next

plane and is repeated until no more hits are left to add to the track. See Figure 3.3

for a diagram of this tracking approach.
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Figure 3.3 Diagram of tracking approach of 2D Kalman tracks.

The colored rectangles represent a hit in a given plane. The green
hits are included on the track based on an estimate of position
and slope of the solid blue line. The red hit is inconsistent and
not part of the track. This process will repeat for the next plane
until there’s no hit left to be added on the track.

These 2D tracks continue to propagate until they cross 3 consecutive planes in

a view without adding a hit. This track finding process initially starts from the

downstream end of the detector, where particles emerging from a neutrino interaction

are relatively more separated than they are in the upstream and proceeds upstream.

After a complete track is found, the procedure is repeated, but now in the reverse

direction i.e. starting from the other end of the found track. This is to determine if

any of the previously added hits should now be rejected. The procedure continues to

create more 2D test tracks in each view independently. With at least 4 track hits a

test track is promoted to being a valid track.

After all the 2D tracks have been made in each view independently, KalmanTrack-

Merge looks at two consistent 2D tracks from different views and tries to merge them

into one 3D track. The information from the 3D tracks and unmatched 2D tracks are
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written out to the file. This information includes the start position of the most up-

stream (lowest z) part of the track, the end position of the most downstream (highest

z) part of the track and all the hits associated with each track. Additional informa-

tion about the tracking algorithms can be found in internal NOνA document [54] or

the thesis by Raddatz [55].

3.5 Chapter Summary

The signal for our current analysis is charged particles initiate a track like signature in

the NOνA detector. To identify tracks, NOνA has developed the event reconstruction

tools and particle-ID algorithms. The reconstruction of particle in NOνA starts from

calibrating the hits using the cosmic muons (Calibration is elaborately described in

Chapter 4). After this, events for the current analysis is reconstructed through the

slicer and Kalman tracking algorithms to get the global and kinematics based features

of the event. Then an event is processed through particle identification algorithms so

that an event can be classified under a particular particle hypothesis.
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Chapter 4

Calibration

4.1 Calibration

To extract physics out of the detector hits, we need to convert a hit into an energy

deposition in those cells based on the amount of light measured. An APD converts

the light to an electronic signal and an ADC converts the electronic signal to a digital

number. The digital number is sent to FPGA (discussed in section 2.3) where it is

converted into a count of photo electrons (PE). The DAQ prescribes a methodology

to record the PEs above some threshold. But before using those signals to extract

physics, they must first be calibrated so that neutrino energies can be reliably recon-

structed. This procedure is accomplished in two sequential steps:

1. Attenuation Calibration that corrects for light attenuation in a cell.

2. Absolute Calibration that converts the corrected ADC value to a standard en-

ergy unit (MeV).

The steps above are elaborated in next sections.

4.2 Attenuation Calibration

The attenuation calibration is performed for each cell in both NOvA detectors. NOvA

cells are quite long, 15.7 m in the far detector and 3.9 m in the near detector. So

photons collected by the fiber from particles that pass through the far end of a cell

(from APD) are attenuated as they travel to register the response to APD. Therefore,
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there are variations in response along the length of the fiber in the same cell and

variations in response among different cells as well. Attenuation calibration is applied

to correct for these variations so that all hits across different regions of the detector

can be compared on equal footing. To correct for this effect, attenuation calibration

translates ADC values into a new unit called corrected Photo Electron (PECorr).

The attenuation calibration uses cell hits from cosmic ray muons that pass through

the entire detector. The track reconstruction used for cosmic muons for calibration

purpose is called CosmicTrack algorithm, described in section 3.4.1. The detector re-

sponse to these cell hits divided by path length through the cell i.e. PE/cm, provides

an uncalibrated response per cm. To provide an accurate path length, calibration uses

tricell hits, shown in Figure 4.1. A tricell hit refers to the interior hit of the 3 con-

tiguous hits that belong to 3 consecutive cells in the same plane. This criteria allows

the path length through the cell to be precisely measured from the cell width and

the angle of the track. The calibration starts with a set of tricell hits selected from

cosmic tracks. Then the tricell response is plotted as a function of the distance from

the center of the cell along the fiber, referred as W . For each cell, a two dimensional

histogram of PE/cm vs W is made and the mean PE/cm value is stored as a profile

histogram. An example of such 2D histogram is shown in Figure 4.2. The profile

of this plot is taken and fit is then performed. For the central portion, the shape of

the attenuation correction is of two exponentials. To fit the “roll off" section at the

near and far ends of a cell, LOcally WEighted Scatter plot Smoothing (LOWESS)

algorithm [56] is applied. An example of the attenuation fitting procedure is shown

in Figure 4.3. The fit curve provides information of PECorr across the W range of

a cell. This procedure is repeated for every cell in the detector. PECorr values are

used to correct the detector response [57, 58]. Figure 4.4 shows the corrected detector

response.
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Figure 4.1 Diagram of a tricell hit.

Diagram of a tricell criteria in the detector
where three consecutive cells in a plane have
been hit. The track length through the inner
cell is reconstructed by Ly/ cos θy using the
diagram’s nomenclature. This outer cells in
the triplet do not hold this relation, so only
the middle, dark red cells are used in calibra-
tion.

4.3 Absolute Calibration

Attenuation calibration converts ADC value to corrected photo electrons (PECorr).

Absolute calibration offers a prescription to translate the PECorr into energy deposit

in standard units, MeV. This method also relies on tricell hits from cosmic muons,

but uses muons that stop inside the detector with the presence of a Michel electron at

the end of the track. Stopping muons are used since we can accurately estimate the

muon energy loss in the detector using the Bethe-Bloch formula. After selecting muon

tracks, the PECorr/cm is plotted as a function of the distance to the endpoint of

the track, shown in Figure 4.4. It is observed that the MIP region of the track exists
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Figure 4.2 The figure shows the 2D distribution of
PE/cm vs W for through going cosmic muons.

The mean PE/cm value for each value of W in the Y view
cells is shown by the black data points. Figure taken from
[57].

in the 100–200 cm range from the end of the track, where dE/dx is approximately

constant. Hits more than 200 cm or less than 100 cm from the end point begin

to influence dE/dx due to the relativistic rise or Bragg peak of the Bethe-Bloch

equation. Thus, hits in the 100-200 cm range from the track endpoint are used as the

standard candle for absolute calibration. An average response (mean PECorr/cm)

in this range is calculated. Scaling the mean PECorr/cm of this sample to the

Monte Carlo (MC) prediction of the mean of the distribution of true energy deposits

in this track window provides a conversion factor between the mean PECorr/cm

and the true energy deposited in the scintillator for muons. In other words, absolute

energy calibration is a factor that takes in the units called PEcorr/cm and converts

it to a physical energy scale measured in MeV/cm. The conversion factor used in

this analysis is approximately 1.4 MeV / cm. Figure 4.5 shows the calibrated dE/dx

distribution of stopping muons in NOvA’s far detector. The absolute calibration
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Figure 4.3 The diagram plots the mean PE/cm
vs W profile.

The mean PE/cm varies with the distance mea-
sured relative to the centre of the cell. The blue
curve shows the attenuation calibration fit for a cell
in the near detector (plane 151 and cell 51) in the
ND. The data is shown in black. Figure taken from
[57].

method and the advancement over different analysis are discussed in technical notes

and papers [59, 60, 61].

4.4 Timing Calibration

The NOvA experiment consists of two detectors separated by 810 km. The electronic

components of these two detectors must be precisely synchronized in time to be able

to identify interactions within a detector . Both the detectors must be externally

synchronized with the neutrino beam clock to correlate candidate events from the

neutrino beam. Any component of the detector or beam uses GPS for time stamp.

The timing offset between beam spill and neutrino interactions in ND, FD are de-

termined from data. The aim of the timing calibration is to achieve internal and
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Figure 4.4 Displayed is the corrected detector response
(PECorr/cm) as a function of distance from the track
end.

This plot is used for absolute energy calibration in the far
detector. for cosmic ray muons that stopped inside the
detector. The black fit points show the mean of the fit to
the distribution for each vertical bin. Values between 100
and 200 cm from the end of the track are considered the
MIP region and used for the absolute energy calibration
in far detector data.

external synchronization. The internal timing calibration measures and accounts for

timing offsets between electronics regions of the detector. detailed info can be found

here [62].

4.5 Chapter Summary

This chapter presents an overview of calibrating the NOνA detectors using cosmic

data.
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Figure 4.5 The plots show the distribution of PECorr/cm between data and
MC before and after applying absolute calibration.

Note the data and MC figures on the left don’t perfectly align. This is before
applying absolute calibration. On the right is calibrated MeV/cm, after absolute
calibration applied. The data and MC show relatively better agreement after
applying absolute calibration.
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Chapter 5

Event Selection

We describe here the initial selection of “νN → 2track" events recorded in the NOνA

near detector. This selection is based on the final state event topology we are going

to study in this analysis. We classify the event selection in two categories. The first

category, data quality, requires the detector to record quality NuMI spill data and

ensures that the data used is of sufficiently good quality for this analysis. The second

category, containment and fiducial, relies on different reconstruction/analysis cuts to

reject events that have particles escaping the detector and improves the accuracy of

the reconstructed muon neutrino energy. The motivation for skimming only 2-tracks

in the final state is to get relatively small data sample that contains only what we

want to analyze. The skimmed dataset is used for particle identification among the

particle trajectories within an event.

5.1 Analysis Period

The Near Detector began collecting data on August 18th, 2014 and only operated as

a complete detector due to its smaller size. The data used in this dissertation span

a time period from the starting period of data taking until Jan. 2017. The data is

registered as official Production3 Near Detector dataset. There’s a total of 12,478

files and 28,465,324 events in the entire dataset.

After a long accelerator shutdown between May of 2012 and September of 2013,

the beam was commissioned and operated typically between 200 to 280 kW between

March and September of 2014. After another accelerator shutdown the beam began
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operating at 300 kW in November 2014 and ramping to 400 kW by April 2015 with

a peak of 520 kW. The full 700 kW beam power started in 2016. The beam was

configured to run neutrinos during the data taking period.

The quality of our physics is impacted by the quality of our beam, the quality of

our detector and the reconstruction of our physics events inside the detector. Sec-

tion 5.1 will address the beam and data quality cuts and section 5.2 will focus on

reconstruction and analysis pre-selection cuts.

5.2 Data Quality Cuts

Data quality cuts ensure that the beam and the detector were in a reliable state at

the time of data taking. High quality data starts with requiring high quality beam.

This requires the beam to be of high intensity, hits the target and the trigger be in

time with beam spill provided by the accelerator. The information on beam related

metrics is hosted centrally in the intensity frontier database (IFDB) from where it

can be retrieved by all the experiments on the NuMI beam. The selection cuts that

are applied on beam spills are listed in Table 5.1.

The Near Detector sees 3–4 neutrino interactions per NuMI beam spill. The data

taken with the detector is primarily organized by run. A run is a contiguous period of

data taking with a single detector configuration. During a run, manually-set detector

configurations do not change. A run is split into subruns with a typical Near Detector

subrun lasting an hour. A run ends when it has 64 subruns or when the total run

duration is 24 hours, or when the detector stops taking data. A subrun ends when

it has a duration of 1 hour or the file size is 1 GB, or the detector stops taking data.

For the near detector, subruns are often 1 hour. The subrun quality metrics are

designed to remove data in case of significant or repeated failures of hardware during

the span of a subrun. The near detector good subrun selection is based on simple

independent cuts listed below. I developed the “good subrun selection algorithm” for
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Table 5.1 Beam Quality Spill Cuts

Cut Description Motivation
|∆SpillT ime| <
0.5sec

Time of trigger recorded by the
detector to be within 0.5 sec of
a trigger time in IFDB

To ensure the trigger
time recorded by the
detector match the In-
tensity Frontier beam
DataBase (IFDB).

POT of spill > 2 ×
1012

Protons on target for the spill
must be greater than 2× 1012.

To reject any of the low
intensity beam that is
unlikely to cause any in-
teraction.

-202 < Horn Cur-
rent < -198

The current within the focus-
ing horns must be between -
202 and -198 kAmps.

To focus π+ in to the de-
cay pipe.

0.02 < X Position
< 2.00

The horizontal position of the
beam must be between 0.02
and 2.00 mm.

To hit the target exactly
where we are expecting

0.02 < Y Position
< 2.00

The vertical position of the
beam must be between 0.02
and 2.00 mm.

To hit the target exactly
where we are expecting.

0.57 < X Width <
1.58

The horizontal width of the
beam must be between 0.57
and 1.58 mm.

To ensure the beam hits
the target on axis.

0.57 < Y Width <
1.58

The vertical width of the beam
must be between 0.57 and 1.58
mm.

To ensure the beam hits
the target on axis.
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NOνA data quality group. The algorithm was applied to select the dataset to run

the first oscillation analyses on. Detailed information can be found in [63].

• Detector Size: All four diblocks are required to be in good working condition

for a subrun to be selected. A diblock is considered good if all the DCMs in

it are operating optimally, i.e. when it contains 12 good Data Concentrator

Modules (DCM). A good DCM must have at least 56 good Front End Boards

(FEB) or fewer than 9 misbehaving FEBs. A good FEB contains at least 26

good pixels (at most 6 bad pixels).

• Subrun duration: subrun > 1000 spills.

• Timing Peak: The timing peak is defined as the time when majority of the

data comes from the numi beam. We check if the detector is synchronized with

beam by applying the following cuts on timing peak (see section 2.4).

– 217 µs ≤ timing peak start ≤ 219 µs,

– 227 µs ≤ timing peak end ≤ 229 µs.

• Empty Spills: Fraction of empty spills (no proton in a spill) in subrun < 3%

.

• Slice Rate: 3.5 < number of slices / spill [2.5 x 1013 PoT/spill equiv.] < 5.5.

• MIP Rate: 12 Hz < median number of signal ADC hits / 1000 spills [2.5 x

1013 PoT/spill equiv.] < 20 Hz.

The subruns that pass data quality cuts are termed as good subrun. During the

analysis period 11,456 good subruns were found out of a total of 12,478 subruns with

an efficiency of 91.80%.
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5.3 Reconstruction and Analysis Cuts

5.3.1 Basic Quality Cuts

Basic quality checks are imposed to ensure the detector was performing normally and

that events are able to be reconstructed. To ensure the slice contains some physics

interaction, we require that the slice has more than 20 hits. To remove primarily

vertical events, presumed to be cosmic background, we require that the slice has hits

in at least 4 contiguous planes.

5.3.2 Containment and Fiducial Cuts

The selection requires to have only 2 3D-Kalman tracks or 2 2D-Kalman tracks in

one view and one 2D Kalman track in other view. With the containment cuts we

want to ensure the neutrino events reside entirely inside the detector where as the

fiducial requirements make sure the that the ν interaction vertex originates inside the

detector. In this analysis we select events with 2 tracks sorted by length in descend-

ing order. We call the first one “long track" and the second one “short track". The

majority of the 2 track events are expected to originate from charged current inter-

actions (νµCC). Majority of CC interactions contain µ since the beam is configured

to run in the νµ mode. Thus we expect the long track to be primarily from muons

and the short track to be a proton or a pion. Selection of containment is based on

muon, proton and charged pion expected in data.

Long Track containment :

For containment, we want to make sure the long track does not have hits in the

outside layers of the near detector. Also particles may escape the detector without

leaving energy in the active region while passing through the dead material. The goal

of the containment is to determine the minimum distance from the edge where the

probability of missing a hit for long track is very low.
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Because NUMI beam mostly contains νµ, we expect the charged lepton, respon-

sible for long track in the near detector, to be primarily a µ. To derive how deep do

we need to go from the edge to make a long track well contained in the near detector,

we analyzed the properties of cosmic muons in far detector(FD). Because FD is on

the surface, there’s an abundance of cosmic ray muons entering the detector from

outside. Most of these muons go through the detector while some stop inside. The

start position of a cosmic track was studied separately in x and y direction. Figure 5.2

displays the start x and start y position of a cosmic track. The peak at |760| cm in

the zoomed histograms reflect the detector edges. We also observe a second, wider

peak in almost all of the zoomed histograms. The second peak is the contribution

from the orthogonal view. In Figure 5.1, cells with open ends are instrumented for

read out purpose, as shown in Figure 2.8. The instrumented sides of the horizontal

planes are misaligned with the vertical planes. The misalignment causes the detector

to register muon start points at farther than |760| cm. leading to a second peak in

the histograms.

A closer look at the zoomed histograms reveal the start position of cosmic track

exponentially decays inside the detector. Because we observe two peaks in every

zoomed start co-ordinate histogram, we have a choice to make an exponential fit to

either of these peaks. Fitting the second peak would give us relatively large decay

constant, that in turn, would result in relatively large distance from the edge of the

detector. The larger decay constant will ensure we are deep enough inside the detector

so no neutrino can escape.

The goal now is to calculate the distance a cosmic muon travels in the far detector

from the edge to the center where the probability of finding the first hit is very very

small. The distance is determined using an exponential fit to the start co-ordinates

of cosmic tracks near detector edges. The exponential fit, drawn in red curve, holds

the form p0 · expp1·(x−p2) +p3, where p0, p1, p2, p3 are fit parameters and x represents
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Figure 5.1 A sketch of the orthogonal structure of the
NOνA detectors.

The alternating vertical and horizontal planes is shown.
They are filled with liquid scintillator. The open ends
are capped for instrumentation. The neutrino beam is
incident from the left. The end of the vertical planes are
misaligned with the end of the horizontal planes. Figure
is taken from [64].

the co-ordinate. The parameters extracted from 4 fits are reported in Figure 5.3.

These fit information are used to determine the containment requirement. We chose

the probability to be 0.004. This is the same probability of a muon traveling some

distance without leaving a hit in the detector, if the muon was produced inside. We

calculate the distances in x and y direction from the edge of the far detector. Since

the near detector and far detector are identical in material composition, we can apply

the same constraints in the near detector.

For the containment in the z direction we use the near detector. The origin of the

z coordinate is defined as the center of the front face of the first plane of the detector.

The near detector has a muon catcher with steel plates (see section 2.2.4). The muon

catcher has a coarser resolution than the active part of the detector. Finally the
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Figure 5.2 The figure displays the start co-ordinates of cosmic muons in the
far detector.

The top row shows the distribution of start x co-ordinate. The left plot spans
the entire x coordinate, the middle and the right plot zooms in the positive
and negative edges of the x axis respectively. The bottom row shows the same
characteristics of the plots but in the start y co-ordinate.
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(a)

(b)

(c)

(d)

Figure 5.3 The figure displays the fit parameters for
various plots in Figure 5.2.

Each of (a), (b), (c) and (d) shows 4 different fit parameters.
(a), (b), (c) and (d) represent parameters for top middle,
for top right, bottom middle and bottom right figures in
Figure 5.2.

muon catcher is shorter in height than the active region. This has been taken into

account while placing a cut in the end z position of a track. A track z end position is

less than 1275 cm or has a y position less than 55 cm when crossing from the active

region to the muon catcher.

Short Track Containment :

The short track, by choice of selection, is shorter than the long track. We apply

the same containment criteria for the end x, y and z coordinates of the short track.
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The cartoons in Figure 5.4 and Figure 5.5 display the containment region. All the

containment criteria for both the tracks are listed in Table 5.2.

Fiducial Requirement :

The short track is mostly populated by protons and charged pions. Thus, we

consider the hadron interaction length to calculate fiducial selection cuts for short

track. Hadronic particles can undergo scattering processes through nuclear interac-

tions. Our detector is composed of scintillator and PVC. The hadronic interaction

length in this composite material is approximately 88 cm. Thus, we require the short

track to start from 90 cm from the edge of the detector from x and y direction. The

start of the short track also represents interaction vertex where the long track starts

from. So we apply the same fiducial requirement for the start x and y coordinates of

the long track.

Both, the long track and the short track, are required to start between 20 and

844 cm in the z direction. The high z requirement is based on the starting point of a

3 GeV muon inside the detector that stops at the end of the detector. In other words,

we project back a 3 GeV muon from the end z of the detector to find out where it

started in the z direction. This starting point coincides with the high z requirement.

The cartoons in Figure 5.4 and Figure 5.5 display the fiducial region. The fiducial

requirements for both the tracks are listed in Table 5.2. The determination of con-

tainment and fiducial is unique contribution to NOνA. This data driven selection can

be used for future use.

5.3.3 Forward Moving Requirement :

We require the zstart coordinates of both the tracks are less than their corresponding

zend coordinates. This ensures that an interaction is moving forward toward down-

stream of the detector with time.
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Figure 5.4 Near Detector containment and fiducial region in x-z view. The
numbers are not representative of x and z scales.

Figure 5.5 Near Detector containment and fiducial region in y-z view. The
numbers are not representative of y and z scales.
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Table 5.2 Containment and Fiducial selection criteria

Start X Stop X Start Y Stop Y Start Z Stop Z
(cm) (cm) (cm) (cm) (cm) (cm)

Long
track

|x| <110 |x| <180 |y| <110 |y| <165 >20 and
<844

either <1275
or enters the
muon catcher.

Short
track

|x| <110 |x| <180 |y| <110 |y| <165 >20 and
<844

either <1275
or enters the
muon catcher.

5.3.4 Vertex Requirement :

The selection requires that the two tracks start within 10 cm of radial distance from

each other to ensure both the tracks start from the same vertex. Ten cm is motivated

by giving the reconstructed vertices a resolution of cell width.

5.3.5 Energy Related Requirement :

Both charged current and neutral current interactions may produce a 2-track topology

but accompanied by either a neutron or a neutrino. Since we cannot reconstruct a

neutron or a neutrino in the detector, these events mimic the signal of current analysis.

Such neutrino interactions may deposit some energy outside of the two tracks. These

kind of events reflect a different topology than what we are looking for. So we require

that the total visible energy of two tracks carry 95% of the slice energy.

Remaining 2-track Sample

We can also plot the number of selected events as a function of the different cuts to

show how much data is lost with each cut. For this plot, I broke the cuts into 5 differ-

ent categories. The first cut was Basic Quality Cuts (section 5.3.1), the second was

Two Track Requirement (first paragraph of section 5.3.2), the third was Containment
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Figure 5.6 Cut progression for Data. The lines illustrate the
remaining tracks after a cut.

and Fiducial Cuts (see section 5.3.2), the fourth was Forward Moving Requirement

(see section 5.3.3), the fifth was Vertex Requirement (see section 5.3.4) and the last

was Energy Related Requirement (see section 5.3.5). The different cuts are enumer-

ated in the plot below as cuts 1 through 6 and 0 represents “No Cut". Figure 5.6

shows the effect of each cut on the data. We started with 28,465,324 events and

we selected around 12,038 2-track events after all cuts are applied. In Figure 5.7,

we present the number of selected events over accumulated POT for different run

numbers. There are a 3/4 outliers in the the distribution with around 20 events per

run but the number of selected events for the rest of the plot is roughly constant over

time.
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Figure 5.7 Selected events / POT vs run number .

5.4 Selection for Stopping Rock Muons

In NOνA the neutrino beam passes through 240 meters of rock before passing through

the near detector. Frequently the neutrinos interact with the rock outside the detector

and produce muons. These muons travel forward and enter through the front face

of the detector. So we have an abundance of pure rock muon sample in the near

detector. We select those rock muons stopped inside the detector and study the

energy loss rate, dE/dx, of those contained muons. The study of the stopping muon

will be used for calibration purpose in the Analysis chapter. Selection of these events

in the near detector start with the data quality cuts described in section 5.2. The

additional selection criteria of the stopping muons is outlined in the next subsections.

5.5 Reconstruction and Analysis Cuts for Rock Muons

The basic quality cuts are applied next. These cuts are same as described in section

5.3.1. The neutrino interactions with the rock upstream of the detector results in

71



www.manaraa.com

a single muon track in the detector. So the selection requires to have only one

reconstructed 3D Kalman track.

5.5.1 “Through the Face" Cut

There exists tracks, result from interactions within the detector, that have a vertices

close to the front detector planes. This cut ensures we avoid those tracks and also

makes sure that the muon entered the detector through its front face. We require the

reconstructed start of the track to have z < 5 cm.

5.5.2 Containment Cuts

Selecting tracks whose reconstructed end point is contained within the detector is

one way of selecting stopping muons. These cuts are designed for the start and end

points of the tracks to be contained within the detector. This is to further exclude

tracks that are entering or exiting through the sides, top or bottom of the detector.

• The zend cut of the reconstructed track is designed to completely exclude the µ

catcher region of the detector. We impose Stop Z < 1275 cm.

• We require |StartX| < 110 cm and |StopX| < 180 cm to exclude tracks exiting

through the sides.

• We require |StartY | < 110 cm and |StopY | < 165 cm to exclude tracks exiting

through the sides.

The containment criteria for x and y co-ordinates follow the same principles as long

track containment in section 5.3.2. Figure 5.8 shows the number of selected events as a

function of the different cuts. For this plot, I broke the cuts into 3 different categories.

The first cut was Basic Quality Cut (section 5.3.1), the second was Through the Face

cut (section 5.5.1), the third was Containment Cut (see later in section 5.3.2). The

different cuts are enumerated in the plot below as cuts 1 through 3 and 0 represents
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“No Cut”. We started with 28,465,324 events and we selected around 336,676 rock

muon events after all cuts are applied.

Figure 5.8 Cut progression for Data. The lines illustrate
the remaining tracks after a cut.
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Chapter 6

Particle Identification

We need to identify the particles involved in our 2-track analysis sample. The ma-

jority of those tracks are comprised of µ± with significant π± and proton population

originating from different CC and NC interactions. In this chapter, first, we describe

how we isolate calibration sample from stopping rock muon data and second, we

present how the calibration sample is used to identify µ and proton in our 2-track

analysis data as described in section 5.3.

6.1 Calibration Sample from Rock Muon Data

The front face of the near detector, is downstream of rock where many beam neutrinos

interact. Neutrino interactions in the rock upstream of the front face of the near

detector produce abundant muons that penetrate the near detector with very little

contamination from other charged particles, for example, π±, p. The selection of this

rock muon data sample is described in section 5.5. Here we split the rock muon data

into two subsets. The first half of the data is used for muon calibration purpose while

the second half confirms the validity of the calibration.

6.1.1 Muon Identification (MID) using Michel Electrons

There are a total of 336,676 rock muon events found. We use first 168,338 events

to identify pure muon and to obtain the energy loss rate (dE/dx) of those muons.

To select the stopping muons, we have selected those tracks whose reconstructed

end point is contained within the detector, described in section 5.4. We then look
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for Michel electrons coming from muons. A Michel electron is an electron produced

when a muon decays at rest:

µ− = νµ + ν̄e + e−. (6.1)

Michel electrons are useful for identifying muons by tagging the delayed energy de-

posited by an e− at end point of a muon track. Michel electrons (MEs) are an

indicator of a muon in a neutrino interaction. Muons decay to electrons with a life-

time (τfree) of 2.1969811 ± 0.0000022 µs [65]. The timescale for identifying MEs is

significantly longer than the timing resolution of hits of a given physics slice and

also the time between physics slices in the ND. So the CellHits from Michel elec-

trons are rarely included in the slice considered as parent physics slice and thus are

not reconstructed in the primary chain of reconstruction algorithms. The algorithm

for detecting Michel electrons is called the MEFinder [66]. The algorithm starts by

finding a vector of candidate ME hits in the noise slice. A noise slice is any slice

either tagged by Slicer4D as a noise slice or defined as number of cells ≤ 10. Hits

within a noise slice must have ADC ≥ 50 to remove electronics noise. To qualify

as candidate ME hits, they must fulfill both, temporal and spatial requirements. A

candidate hit is required to occur within 10µs of the mean time of the parent physics

slice and also be within 40 cm of some hit in a physics slice. Once the collection of

Michel hit candidates is found, the hits are clustered together using DBScan cluster-

ing algorithm [49]. MEFinder outputs two different ME clusters, TrkME and SlcME.

The reconstructed Michel cluster is saved as a TrkME if it lies within a 20 cm sphere

surrounding the endpoint of a reconstructed Kalman track in the physics event. The

Michel electron is then associated with that track. The output TrkMEs are added

into the art file during reconstruction. TrkMEs have a high purity sample that will

be used for calibration and precision checks in the next chapter.

Michel electrons are not the only time-delayed physics process associated with

neutrino interactions. There could be various non-Michel physics activity tagged by
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(a) (b)

Figure 6.1 The ∆t distribution for reconstructed Michel clusters.

(a) The ∆t distribution for Michel clusters reconstructed in the near
detector for selected rock muon data. The cut is placed at ∆t ≥ 1200 ns
and marked by blue dotted line. Events with ∆t < 1200 ns are discarded
to remove the any contamination caused by other activities.
(b) The muon decay data is shown with the exponential fit.

MEFinder algorithm. To further make sure we select pure muon tracks, we assign a

further requirement over samples of selected muon tracks. We require the difference

in time (∆t) between the track end hit and the ME cluster to be larger or equal

to 1200 nanosecond (∆t ≥ 1200 ns) to improve the sample purity. The Michel

electron requirement and the ∆t ≥ 1200 ns removes 72% of the rock µ candidates.

Though this cut throws away many muon events yet preserves large statistics after

the cut. With this cut we expect to obtain a high purity muon sample that will be

studied in the section below. Figure 6.1 right plot shows the resulting ∆t distribution

fitted to an exponential, dN
dt

= Ae
−t
τ . The fitting result yields a mean lifetime of

τ = (2.00± 0.18) µs, consistent with the µ lifetime.
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6.1.2 Muon dE/dx Template

Muons in our detectors lose energy (dE/dx) following the Bethe-Bloch equation [67].

For muons which stop inside the detector the energy at various points along its track

can be found. The fact that the energy loss is maximum just before a particle comes

to complete rest can be used to distinguish muons from other particles. Once we

select those rock muons stopped inside the detector we can study the energy loss

rate, dE/dx, of those contained muons. The present analysis explores the dE/dx

of selected muons at last 5 planes from the end of the track. A value of dE/dx

is calculated by summing the total calibrated visible energy in a plane associated

with the reconstructed track and dividing by the total path length in active material

that the track goes through in that plane. The dE/dx measurement is performed

on a plane level, instead of a cell by cell level, in order to avoid potential problems

with the calculation of active path length that might result from reconstruction or

alignment uncertainties. Using the dE/dx shape information from last 5 planes of

a muon track will make it possible to distinguish muon from other particles in our

analysis sample. In Figure 6.2, dE/dx is measured for last 5 planes starting from the

end of the track. Five planes from the end of the track are considered only to exploit

the “Bragg peak”. Since the Bragg peak is pronounced in last few planes for a proton,

it allows one to discriminate µ from a proton. There exists little information beyond

5 planes from the end to discriminate from one particle to other. Among the last 5

planes, we throw away information from the last plane. Since we don’t know where

the particle stops within a cell, we cannot extract any useful information out of it.

Thus the distribution of measured dE/dx values for only 4 planes will be used in the

next section to calibrate our analysis sample.
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Figure 6.2 The distribution of muon dE/dx for last 5 planes is shown in the
figure.

Top left: last plane from the end of the track, Top right: the 2nd last plane,
Middle left: the 3rd last plane, Middle right: the 4th last plane, bottom: the
5th last plane.

6.2 Performance of MID in Confirmation Sample

We have dedicated section 6.1 to develop muon dE/dx template using the “first” half

(i.e.168,338 events) of 336,676 rock muon events found in section 5.5. In this section

we will address the question how efficiently we use this muon template to identify
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muon from a random data collection. In order to check the validity of the MID

technique we use the “later” half (i.e.168,338 events) rock muon events. We apply

Michel electron cut (described in section 6.1.1) on the dataset. As it stands, the

sample we are currently discussing has the same selection cuts applied as calibration

sample and thus guarantee that it contains muon. However, this sample remains

untouched so far for the calibration purpose. We aim to check the performance of

MID on this sample. What we want to confirm is, if the second set of data, upon

applying identification procedure, follows the same behavior as the calibration sample.

6.2.1 Muon Identification Variable

The variable dE/dx log-likelihood (LL) is used to classify how close a reconstructed

track’s energy deposit is like a muon. dE/dx is determined for last five planes, as

discussed in section 6.1.2. As mentioned earlier, only last 5 planes of a given track

are considered since those planes have discriminating power to separate different MIP

particles. Because we don’t know where the muon stops in the last plane, dE/dx is

discarded for the last plane of every track studied and thus, not included in the

analysis.

We follow up the dE/dxmeasurements with what is the probablity that the energy

deposition profile of any given track characterize the behavior of muons in the NOνA

detector. The probability, Pi, of a particle to have the measured dE/dx at a specific

plane i from the end of the track is calculated from histograms created using muon

data events from Figure 6.2. This is illustrated with a single example considering

the 2nd from the last plane. First, the algorithm measures the energy deposit for

the 2nd from the last plane of a track. Using the dE/dx information the probability

at that specific plane is found from the normalized dE/dx histogram stored for the

2nd from the last plane for muon track. The same method is followed to find the

probability for the rest of the 3th, 4th and 5th last planes. The energy measurements
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are performed at each plane independently. Thus the total probability for a certain

particle to behave like a muon can be written as,

L =
5∏
i=2
Pi, (6.2)

where i denotes the last 2nd to 5th plane. All these 4 planes are counted in the Log

Likelihood (LL). The total log likelihood for the considered particle is calculated by

LLtotal =
5∑
i=2

logPi. (6.3)

6.2.2 Performance

Following the procedure above we find out the log likelihood of confirmation sample.

Next we compare it with the the log likelihood of the calibration sample. Once we

overlay these two log-likelihood plots, we expect to see an excellent agreement in both,

overall shape and normalization. Figure 6.3 shows very good agreement of the log-

likelihood plots between calibration and confirmation sample. To compare these two

histograms quantitatively, a χ2 test is performed. We obtain a value of χ2/NDF =

57.23/59 from the test. This χ2 and NDF allows us to evaluate the probability

(P value) that the two distributions come from the same parent distribution. The

P value for the comparison is 0.53. The value confirms the behavior of calibration

sample as we expect it.

6.3 Particle Detection using Log-likelihood

The primary goal of this thesis is to identify νµ 2-track topology νµ +n→ µ−+ p. In

such events one would expect two tracks originating from the reconstructed primary

vertex, one of them identified as a muon, the other one as a proton. Chapter 5

describes selection of 2-track events originate from the same vertex. This section
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Figure 6.3 dE/dx LLtotal distribution for
calibration sample is overlaid on that of
confirmation sample.

attempts to identify events where one of the track is a muon and the other one is a

proton using the log-likelihood method .

6.3.1 Identifying Particles

For the ease of work flow we will first analyze the short track sample of 2-track

events. Considering different CC and NC interactions, the short track is most likely

populated by one of the 3 particles : either a proton or a muon or a pion. It appears

to be highly challenging to distinguish a pion from a muon in a data driven fashion.

So the analysis will focus on distinguishing a proton from a muon.

The dE/dx distributions for last 5 planes for a short track are shown in Figure 6.4.

Note that we throw away information on very last plane. For the rest of the plots

we observe there are two distinct peaks in each of those distributions. Furthermore

81



www.manaraa.com

the peak on the right moves left as we move farther from the end of the track. If

compared with the distributions of Figure 6.2, it appears that the left peak of the

distributions in Figure 6.4 coincides with the muon peak from calibration sample. The

idea is to fit the muon in the muon-like peak of the short track sample and extract

proton. To carry this idea forward we make use of log-likelihood. With the energy

deposition at a given plane, we can calculate the log-likelihood of a short track using

the method derived in section 6.2.1. The right plot of Figure 6.5 is the log-likelihood

distribution for the short track events and the left plot is that of calibration sample.

Log-likelihood returns a value between -50 and 0. A fine observation again reveals

that the calibration peak occurs at the same place as the right peak of the short track

sample in Figure 6.5. This leads us to recognize the sharp peak in the short track

sample at log-likelihood value of -10 and close as muonic. Based on this observation

we can claim the right peak of Figure 6.5 right plot is more muon-like and the left peak

of the same figure is more proton like. The next step would be relating the observation

to a fitting procedure that aims to fit the muon log-likelihood distribution to that of

the short track.

The procedure involves two steps. The first step is to determine the range of the

fitting and the second one is performing it. Since the peak occur at -10 for both the

plots, the range -14 to -8 for the fitting region seem reasonable. In order to fit in that

specified range we also need a scaling factor to apply on calibration sample. This

scaling factor is determined by following the minimum χ2 technique. χ2 is calculated

by

χ2 =
∑
i

(s× LLcalib
i − LLsti )2

σ2
i

, (6.4)

where s is a scaling factor, LLcalibi represents the bin content of the ith bin from

calibration plot, LLsti represents the same but from the short track data and σ2
i is

the variance, defined by the following equation

σ2
i = (σ2

calib + σ2
st), (6.5)
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Figure 6.4 The distribution shows “short track” dE/dx for different planes.

Top left: last plane from the end of the track, Top right: the 2nd last plane,
Middle left: the 3rd last plane, Middle right: the 4th last plane, bottom: the
5th last plane.
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Figure 6.5 Left: Presented is the diagram of LLtotal for calibration
sample. Right: The plot in red represents LLtotal for short track data.

where σcalib =
√
s× LLcalib

i and σst =
√
LLsti . The measured χ2 is the summation of

individual contribution of χ2 in each bin in the range of −14 ≤ LLtotal ≤ −8. A scale

factor s is now determined by minimizing χ2. The value of s from the fit is applied to

the LLtotal distribution of muon to normalize that of the short track. With the fitting

a total of χ2/Ndof of 66.9763/20 is achieved. The resulting distribution is shown on

left of Figure 6.6. At this point a pertinent question to ask would be if we can extract

a proton template out of the short track data. To address this we subtracted the

muon log-likelihood from the short track log-likelihood after performing the fitting

procedure to extract only protons. The Figure that results from this method is

displayed in Figure 6.6. With this we separate candidates into muon and proton

population.

So far the technique we have followed to separate muon from proton is statistical.

Next we would like to attempt to identify particle types such as a proton or muon

event by event. One way to do this would be to make a selection based on log-

likelihood values of an event. We choose the value LLtotal = 16 and we require any
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(a) (b)

Figure 6.6 The left diagram displays the LLtotal for short track sample
overlaid with that of calibration sample. The right diagram showcases
LLtotal for proton.

(a) LLtotal of short track data is drawn in red color. A fitting procedure
is then performed using the LLtotal of calibration sample. The calibration
sample is scaled down to fit the peaks of both the sample in the range −14 ≤
LLtotal ≤ −8. The fitting technique uses minimum χ2 method.
(b) Proton sample is derived by subtracting the muon LLtotal from short
track LLtotal. The area under the purple curve represents proton population.

track with LLtotal > −16 is considered as muon and LLtotal < −16 as proton. We

overlay the LLtotal plots for muon, proton and short track in Figure 6.7. Though

the right side of the blue dotted line is muon side the left side is for proton, there’s

some overlap between proton and muon in the range. This overlap introduces some

contamination on both sides.

After we have achieved the technique to identify a proton and a muon, we will

move on to consider long track events. The same method, as described in section 6.2.1

is followed to calculate log-likelihood of long tracks. dE/dx for last few planes for the

long track sample are displayed in Figure 6.8. Using this information the LLtotal is

calculated and displayed in Figure 6.9. The red dotted line at LLtotal = −16 marks
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Figure 6.7 The figure displays the LLtotal of
short track overlaid with that of calibration
and proton sample.

The purple represents proton curve and the
black line is scaled down muon curve. The red
line shows the result when overlaid both sam-
ples together. The blue dashed vertical line
indicates the separation of candidates into a
muon and proton population.

a distinction between muons on the right side and protons on the left. With that

said, there’s still a small amount of contamination underlying in the muon track. To

determine the underlying proton contamination on the muon track, we subtract the

muon from the long track sample.

6.3.2 Efficiencies and Uncertainties

Efficiency For Identifying Proton

The proton efficiency is defined by

εp = Number of correctly identified protons
Total Number of protons . (6.6)
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Figure 6.8 The distribution shows “long track” dE/dx for different planes.

The distribution displays “long track” dE/dx for different planes. Top left:
last plane from the end of the track, Top right: the 2nd last plane, Middle
left: the 3rd last plane, Middle right: the 4th last plane, bottom: the 5th last
plane.
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Figure 6.9 The muon curve (black line) is scaled down to fit the long track (blue
curve). The red dashed vertical line separates the muons on the right side from
other candidates on the left.

We write the εp in terms of integrals under different curves from Figure 6.7 so we can

visualize the measured integral as

εp =
∫−16
−50 Proton Curve∫−5
−50 Proton Curve

. (6.7)

The proton efficiency for the entire dataset is found to be 97.08%.

Efficiency For Identifying Muon

The muon efficiency is defined by

εµ− = Number of correctly identified muons
Total number of muons . (6.8)

We write the εµ in terms of integrals under different curves from Figure 6.9 so we can

visualize the measured integral as

εµ− =
(
∫−5
−16 Long Track Curve−

∫−5
−16 Proton Contamination from Long Track Curve∫−5

−50 Muon Curve
.

(6.9)
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The muon efficiency is measured as 96.70%.

Uncertainties on Efficiencies

The uncertainty is propagated following the standard rules. The denominator in

Equation 6.7 can be rewritten as :

εp =
∫−16
−50 Proton Curve∫−5
−50 Proton Curve

=
∫−16
−50 Proton Curve

(
∫−16
−50 Proton Curve +

∫−5
−16 Proton Curve

. (6.10)

To estimate the uncertainty on efficiency, we rewrite Equation 6.10 by replacing the

numerator with i and the denominator with i+m. i stands for particles identified and

m stands for the same particle but misidentified. Thus the elements of the efficiency

can be written as

εp = i

i+m
. (6.11)

The uncertainty now can be calculated using the following formula

δεp = [(δε
δi

)2 δi2 + ( δε
δm

)2 δm2)] 1
2 , (6.12)

where
δε

δi
= 2i+m

(i+m)4 and
δε

δm
= i

(i+m)2 . (6.13)

Replacing the differentials of Equation 6.12 with Equation 6.13 and plugging in

the values for i and m, the uncertainties associated with the proton efficiency is

calculated as:

εp ± δεp = 97.08%± 2.0%. (6.14)

Following the same technique the uncertainty on muon efficiency calculation is found

εµ− ± δεµ− = 96.70%± 1.6%. (6.15)
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This suggests that the selection efficiency of finding a muon and a proton outweighs

the negative impact of misidentifying a muon as proton and a proton as a muon. The

above efficiencies will be used in calculating the cross-section ratio.

6.4 Chapter Summary

In this chapter we have outlined how we determine the identity of a particle seen in

our sample and measured the efficiency for that particle once a track is found. In the

next chapter we will use this information to determine the cross section ratio.
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Chapter 7

Analysis Result

7.1 Measurement of Cross-section Ratio

A total of 12038 CCQE 2-track candidate events have been selected in the data

sample, discussed in chapter 5. In chapter 6 we have achieved the ability to identify

each particle of all 2-track events. This equips us to calculate the cross-section ratio.

The cross section ratio we are going to measure is expressed as,

Rσ = σ(νµn→ µ−p)
σ(νµn→ 2track) . (7.1)

First, we will focus on the denominator. The experiment cannot measure the fun-

damental interaction but only the final state particles after nuclear effects. All we

observe for σ(νµn→ 2track) topology is two tracks originating from the reconstructed

primary vertex. Events with such a topology can arise due to various interaction pro-

cesses. We will take a look at those processes, listed in Table 7.1, so we can break

down σ(νµn→ 2track) into specific observable final states.

There are many more that gives rise to 2-track event but are not listed in the

table. Of all those processes that majorly contribute to the all 2-track events in the

range NOνA operates are CCQE and CCRES and NCRES. So we write Equation 7.1

by splitting σ(νµn→ 2track) into different major components:

Rσ = σ(νµn→ µ−p)
σ(νµn→ 2track)

= σ(µ−p)
σ(µ−p) + σ(pπ−) + σ(µ−π+) + σ(π+π−) + σ(µ+µ−) , (7.2)
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Table 7.1 Interactions that contribute to 2 tracks in the final state

Interaction type Interaction detail Final state observables
1 CCQE νµ + n→ µ− + p the most obvious.
2 CCRES νµ + n→ µ− + n+ π+ neutron is invisi-

ble producing only
2-tracks.

3 CCRES νµ + p→ µ− + p+ π+ the pion can be reab-
sorbed in the nucleus
leaving only 2 tracks.

4 NCRES νµ +n→ νµ− + p+π− neutrino is invisible,
leaving only 2 tracks.

5 NC νµ+n→ νµ− +π++π− neutrino is invisible,
leaving only 2 tracks.

6 NC νµ+n→ νµ− +µ++µ− neutrino is invisible,
leaving only 2 tracks.

7 CCCoherent νµ +A→ µ−+A+π+ low-Q2 interactions
produce no nuclear
recoil with only 2
tracks.

where we have used the notation that only includes the final state particles. Because

this analysis cannot distinguish a muon from a pion, we write 1st and 2nd term

in the denominator as σ(νµn → µ−p) and the last 3 terms in the denominator as

σ(νµn→ µ−π+). With the same reasoning the numerator is not just µ−p but it is a

mixture of µ−p and π−p. This allows us to rewrite the Equation 7.2 as

Rσ = σ(νµn→ µ−p)
σ(νµn→ µ−p) + σ(νµn→ µ−π+) . (7.3)

The cross-section is estimated using

σ = (Ndata
selected −B)

ε× Φ×Nnucleons
, (7.4)
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where Ndata
selected and B represent the number of selected events and the estimated

number of background events, ε is the signal selection efficiency, Φ stands for neutrino

flux and Nnucleon is the number of nucleon targets in the fiducial volume. Since our

analysis is measuring cross-section ratio, the denominator Nnucleons × Φ cancel each

other while computing the ratio. Inserting Equation 7.4 in Equation 7.3, we can

rewrite Equation 7.3 :

Rσ =
N

(µ−p)
selected − B(µ−p)

εµp

N
(µ−p)
selected − B(µ−p)

εµp
+ N

(µ−π+)
selected − B(µ−π+)

εµπ

. (7.5)

Again, εµp can be written as a product of εµ and εp for the current analysis technique.

Equation 7.5 now takes the form

Rσ =
N

(µ−p)
selected − B(µ−p)

��εµ− × εp × ���εgeom

N
(µ−p)
selected − B(µ−p)

��εµ− × εp × ���εgeom
+ N

(µ−π+)
selected − B(µ−π+)

��εµ− × επ+ × ���εgeom

. (7.6)

Equation 7.6 equips us with all the pieces required to compute the cross-section ratio.

We will take a detailed look at each term in the ratio expression. Now we proceed to

calculate the individual terms in Equation 7.6.

Calculating [N (µ−p)
selected −B(µ−p)]

We obtain the N (µ−p)
selected by using the PID, developed in previous chapter, to select a

µ− and a p from 2-track events in various combination as shown in Table 7.2 and

Figure 7.1. The last column in Table 7.2 lists various combinations of two tracks, one

being a muon and the other a proton. Adding up, a total of 8776 “muon-proton” is

found. A correction factor, B, is calculated to account for the purity from Figure 6.7.
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Table 7.2 Characterizing µ−p events.

µ− ID pID Types of Events
found

Long Track 1 0 muon-proton
Short Track 0 1 found
Long Track 0 1 proton-muon
Short Track 1 0 found

Figure 7.1 Characterizing µ−p events.

B(µ−p) =
∫ −16

−50
Muon(Calibration) Curve +

∫ −5

−16
Proton Curve

= 422.0. (7.7)

If we denote (N (µ−p)
selected − B(µ−p)) = obs.(µ−p), the uncertainty on obs.(µ−p) is deter-

mined by

δ (obs.(µ−p)) =
√
N

(µ−p)
selected +B(µ−p)

= ±95.90. (7.8)

Table 7.3 summarizes the features of the selected muon-proton samples.
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Table 7.3 Related numbers on µ−p selection.

Sample Total number
Selected µ− p [ N (µ−p)

selected ] 8776.0 ± 93.68
Bkg. B(µ−p) 422.0 ± 20.54
N

(µ−p)
selected - B(µ−p) 8354.4 ± 95.90

Calculating [N (µ−π+)
selected −B(µ−π+)]

Due to their similar mass, disentangling a pion from a muon is difficult. This analysis

does not try to differentiate between a muon and a pion. For now, this has been dealt

with applying a subtle logic to our 2-track analysis sample. We use the same selection

criteria for selecting a pion as a muon. If our selection can identify one track as muon

and the other one as “non-proton” but as “muon”, we call the event a µπ. With

that said, one could argue that particular event could be a µµ by virtue of selection

criterion. The PID is run to select a µ− and a π+ from 2-track events as shown in

Table 7.4 and Figure 7.2. We found a total of 2417 µ−π+ events.

Table 7.4 Characterizing µ−π+ events.

µ− ID pID Types of Events
found

Long Track 1 0 muon-pion
Short Track 1 0 found

95



www.manaraa.com

Figure 7.2 Characterizing µ−π+ events.

A correction factor B is calculated to account for the purity from Figure 6.7.

B(µ−π+) =
∫ −5

−16
Proton Curve

= 312.52. (7.9)

Denoting (N (µ−π+)
selected −B(µ−π+)) = obs.(µ−π+), the uncertainty on obs.(µ−π+) is calcu-

lated as,

δ (obs.(µ−π+)) =
√
N

(µ−π+)
selected +B(µ−π+)

= ±52.24. (7.10)

Table 7.5 summarizes the features of the selected muon-pion samples.

Table 7.5 Numbers on µ−π+ selection.

Sample Total number
Selected µ−π+ [ N (µ−π+)

selected ] 2417 ± 49.16
Bkg. B(µ−π+) 312.52 ± 17.67
N

(µ−π+)
selected −B(µ−π+) 2104.48 ± 52.24
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Obtaining εµ− and εp

The efficiencies and related uncertainties are discussed in section 6.3.1 and summa-

rized in Table 7.6.

Table 7.6 Efficiencies of identified particles

Efficiency Uncertainty
εp 97.08% 2.0%
εµ− 96.70% 1.8%

Computing Rσ

The calculated values derived from the expressions above result in Rσ = 0.798. The

fractional uncertainty δRσ is computed by propagating the fractional errors in the

numerator and the denominator of Rσ. This results in

δ R

R
= 0.031 (7.11)

→ δR = 0.798× 0.031 = 0.024. (7.12)

A full data analysis yield the following cross-section ratio

R = 0.798± 0.024, (7.13)

where the uncertainty is statistical only.

7.2 Kinematic Dependence of Cross-section Ratio

The previous section computes the cross-section ratio after subtracting off the back-

ground and the efficiency correction. In this section, we want to understand the

kinematic dependence of the measured cross-section ratio on muon final state kine-

matics. First, the kinetic energy (Tµ) of muon is considered as one of the final state
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muon kinematics. We ask what the kinetic energy distribution of muon from signal-

like events look like. For all the signal-like events, the dataset is divided into two at

the mean of the distribution. Each dataset is then subsequently split into two at the

means of the new distributions. The purpose is to distribute the signal-like events

into 4 different subsets equally populated. The events are finally grouped into 4 bins

of µ kinetic energy, 0 < Tµ < 0.7 GeV, 0.7 < Tµ < 1.1 GeV, 1.1 < Tµ < 1.6 GeV

and 1.6 < Tµ < 4.0 GeV. Once we divide our sample into 4 different bins, we plot

4 “log-likelihood” distributions for muons corresponding to events in each bin. The

log-likelihood distributions allow us to calculate the expected number of signal and

background for the individual bin. The cross section ratio is measured using a formula

described in Equation 7.4 in each bin of the kinetic energy of muon. The cross-section

ratio measurement as a function of muon final state kinematics is shown in Figure 7.3

and the values are reported in Table 7.7. The data shown here are drawn only with

the statistical uncertainties.

The same analysis technique is followed to investigate the ratio in various kine-

matic region of angles of outgoing muons with respect to beam axis. The result of

the analysis is presented in Figure 7.4 and reported in Table 7.8.

7.3 Systematic Uncertainties

To finish the analysis, we must understand and quantify the systematic errors. Sys-

tematic errors allow us to determine the uncertainty our measurement has due to

approximations and unknowns in our analysis. The sources of systematic uncertain-

ties, considered for now and discussed below, in this analysis will have an impact on

the final uncertainty of our measurement.
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Figure 7.3 The figure displays the
cross-section ratio measurement as a
function of muon kinetic energy in variable
bin width.

The data, only with statistical uncertainty,
is shown in magenta.

Table 7.7 Reported is the
measured cross-section ratio
values for variable Tµ bins and
the corresponding uncertainties.

Tµ (GeV) Rσ Stat Unc.
(0.0, 0.7) 0.876 ±0.036
(0.7, 1.1) 0.814 ±0.033
(1.1, 1.6) 0.765 ±0.029
(1.6, 4.0) 0.746 ±0.031
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Figure 7.4 The figure shows the
cross-section ratio measurement as a function
of muon cosine theta in variable bin width.

The data, only with statistical uncertainty, is
shown in magenta.

Table 7.8 Reported is the
measured cross-section ratio
values for different cos θµ bins and
the corresponding uncertainties.

cos θµ Rσ Stat Unc.
(0.0, 0.7) 0.924 ±0.040
(0.7, 0.88) 0.868 ±0.036
(0.88, 0.95) 0.915 ±0.038
(0.95, 1.0) 0.973 ±0.042
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7.3.1 Absolute Energy Scale Offset

The calibration procedure described in chapter 4 determines the absolute energy

scale that converts the attenuation corrected light signal measured in the cells to an

energy deposited in the scintillator of the cell. How well the absolute energy scale

was determined by this procedure, is a subject of uncertainty. Past studies with well

known energy deposition such as the reconstructed π0 mass peak in the near detector

[68], Michel electron calibration study in the ND [69] show that a ∼ 5% uncertainty

exists in the absolute energy scale determined by the detector calibration. This

uncertainty in the absolute energy scale gets propagated as we advance through the

reconstruction chain and affects the estimated energy of selected events, for example,

the selected muon energy, which is “not” based on track length. It would also shift

any reconstructed track energy and therefore the reconstructed neutrino energy. The

chances are high that it can hamper efforts to identify muons by looking at the energy

deposition along the length of a track. So Shifts in absolute calorimetric energy scale

of ±5% will be applied to account for the absolute calibration offset. The shifts and

the corresponding values are given in Table 7.9 and 7.10.

7.3.2 Detector Composition

We will see more or less neutrino interactions and more or less energy deposition if

our detectors are more or less dense than we expect. The extrusions and glue, that

account for 36% and the scintillator, that accounts for 63% of the near detector mass,

contribute to the uncertainties in the mass of the NOνA detector. The uncertainties

on mass accounting, the elemental composition and the inhomogeneity in scintillator

material can be the potential source to change the dE/dx, that eventually translates

into the reconstructed energy of muon. These errors result in a 0.7% uncertainty [70].

Table 7.9 and 7.10 summarizes the errors and the effect on the cross section ratio.
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7.3.3 Error on Particle Identification Parameter LLtotal

The uncertainties on cut value of LLtotal, used for particle identification, can po-

tentially impact the signal and background distributions in every bin. To assess the

impact this uncertainty has on the cross-section ratio measurement, we alter the value

of LLtotal by ±1. The corresponding uncertainties are summarized in Table 7.9 and

7.10.

Table 7.9 Reported is the measured cross-section ratio and the systematic
uncertainties in variable bin width of Tµ.

Source of
Uncertainty Variation Tµ (GeV)

(0.0, 0.7)
Tµ (GeV)
(0.7, 1.1)

Tµ (GeV)
(1.1, 1.6)

Tµ (GeV)
(1.6, 4.0)

Central Value 0.8761 0.8147 0.7658 0.7461

Abs. Calibration ±5% −0.00003
−0.0046

+0.0127
−0.0035

−0.0033
−0.0006

+0.0064
−0.0089

Det. Composition ±0.73% +0.0006
−0.0007

+0.0158
+0.0005

−0.0006
−0.0024

+0.0059
+0.0010

LLtotal ±1 +0.0074
−0.0095

+0.0108
−0.0072

+0.0103
−0.0050

+0.0086
−0.0157

We report the central values of the cross-section ratio in 4 different Tµ bins. The
sources of only systematic errors and the corresponding uncertainties are reported
in comparison to the central values. All values are reported with large number of
significant figures.

7.4 Result

We notice from Section 7.3 that the systematic uncertainties are very small. It is also

apparent from Table 7.9 that the uncertainties are asymmetric for uniform variation

of a given source of error. To select the uncertainties conservatively we pick the larger

of the 2 uncertainties. The largest contributions to the systematic uncertainty in the

measurement of cross section ratio in variable Tµ bins are presented in Table 7.11.
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Table 7.10 Reported is the measured cross-section ratio and the systematic
uncertainties in variable bin width of cos θµ.

Source of
Uncertainty Variation cos θµ

(0.0, 0.7)
cos θµ
(0.7, 0.88)

cos θµ
(0.88, 0.95)

cos θµ
(0.95, 1.0)

Central Value 0.9242 0.8682 0.9152 0.9737
Abs. Calibration ±5% < 10−6 < 10−6 < 10−6 < 10−6

Det. Composition ±0.73% < 10−6 < 10−6 < 10−6 < 10−6

LLtotal ±1 +0.0059
−0.0080

+0.0063
−0.0076

+0.0030
−0.0033

+0.0009
−0.0017

We report the central values of the cross-section ratio in 4 different cosθµ bins. The
sources of only systematic errors and the corresponding uncertainties are reported
in comparison to the central values. All values are reported with large number of
significant figures.

We recombine all the selected uncertainties from each source by adding them in

quadrature. The result leads to a total uncertainty, assuming all the systematic

errors are uncorrelated. The combined (stat.+syst.) uncertainties in different kinetic

energy bins of muon are presented in Table 7.11. The total uncertainties (stat.+syst.)

from these shifts are also shown in Figure 7.5. For each population in the Figure,

the cross-section ratio spectrum in the near detector is drawn with the resulting

uncertainty shown as a vertical line.

Given that the effects of absolute calibration and detector composition are negli-

gible in Table 7.10, no systematic error will be taken for those source of uncertainties.

Only the larger of LLtotal uncertainty contributes to the systematic uncertainty in the

measurement of cross section ratio in variable cos θµ bins, presented in Table 7.12.

The total uncertainty (stat.+syst.) from all the shifts is determined following the

same technique as before and is shown in Figure 7.6. The result for the total cross

section ratio is 0.798±0.024 (stat) ±0.009 (syst). In describing the result to be found,

the Figures and Tables are conveyed in the following pages.
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Figure 7.5 Shown here is the cross-section
ratio measurements as a function of variable
bin width of muon kinetic energy.

The data is presented with combined uncer-
tainty (stat.+syst) and is shown in magenta.

7.5 Summary

We have analyzed data from the NOνA near detector to obtain the ratio of cross

section, Rσ = σ(νµn→µ−p)
σ(νµn→2track) . We obtain a value of Rσ = 0.798 ± 0.024 (stat) ±0.009

(syst). Furthermore, we have determined the cross section ratio values in each bin

of muon kinetic energy and the cosine angle of the muon. These results are model

independent and may be compared with predictions from various theoretical models

of nuclear effects in ν interactions.
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Table 7.11 Reported is the cross-section ratio measurement in variable
bin width of Tµ.

Uncertainty
Source of

Uncertainty Tµ (GeV)
(0.0, 0.7)

Tµ (GeV)
(0.7, 1.1)

Tµ (GeV)
(1.1, 1.6)

Tµ (GeV)
(1.6, 4.0)

Central Value 0.8761 0.8147 0.7658 0.7461
Abs. Calibration -0.00003 +0.0127 -0.0006 +0.0064
Det. Composition +0.0006 +0.0158 -0.0006 +0.0059
LLtotal +0.0074 +0.0108 +0.0103 +0.0086

Combined Syst.
Uncertainty 0.0074 0.0229 0.0103 0.0122

Stat. Uncertainty 0.0369 0.0339 0.0299 0.0316

Combined Uncertainty
(Stat. + Syst.) 0.0376 0.0409 0.0316 0.0338

We report the central values of the cross-section ratio in 4 different Tµ
bins. The sources of errors and the corresponding largest uncertainties are
reported in comparison to the central values. The statistical uncertainty
is also shown in the Table. Last row computes the combined [stat.+syst.]
uncertainties corresponding to each central value of the cross section ratio.
All values are reported with large number of significant figures.
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Figure 7.6 Shown here is the cross-section
ratio measurement as a function of variable
bin width of muon angle w.r.t. the beam axis.

The data is presented with combined uncer-
tainty (stat.+syst) and is shown in magenta.
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Table 7.12 Reported is the measured cross-section ratio in variable bin
width of cos θµ.

Uncertainty
Source of

Uncertainty cos θµ
(0.0, 0.7)

cos θµ
(0.7, 0.88)

cos θµ
(0.88, 0.95)

cos θµ
(0.95, 1.0)

Central Value 0.8761 0.8147 0.7658 0.7461
LLtotal +0.0059 +0.0063 +0.0030 +0.0009

Combined Syst.
Uncertainty 0.0059 0.0063 0.0030 0.0009

Stat. Uncertainty 0.0406 0.0362 0.0386 0.0421

Combined Uncertainty
(Stat. + Syst.) 0.0410 0.0367 0.0387 0.0421

We report the central values of the cross-section ratio in 4 different cos θµ
bins. The sources of errors and the corresponding largest uncertainties are
reported in comparison to the central values. The statistical uncertainty
is also shown in the Table. Last row computes the combined [stat.+syst.]
uncertainties corresponding to each central value of the cross section ratio.
All values are reported with large number of significant figures.
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